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Testing Error Handling Code with Software Fault
Injection and Error-Coverage-Guided Fuzzing

Jia-Ju Bai, Zi-Xuan Fu, Kai-Tao Xie, Zu-Ming Jiang

Abstract—Real-world programs require error handling code to handle various kinds of possible errors. However, these errors just
infrequently occur due to special conditions, so error handling code is difficult to test. Coverage-guided fuzzing and software fault
injection (SFI) are two common techniques that can test error handling code, but they still have major limitations. Specifically, existing
fuzzing approaches generate program inputs guided by code coverage, but many occasional errors (such as insufficient memory) are
unrelated to inputs, and code coverage cannot effectively reflect the execution contexts of these errors; existing SFI approaches often
inject single or random faults, without exploring fault space or using program feedback. In this paper, we propose a new fuzzing
framework named EH-Fuzz, to effectively test error handling code. EH-Fuzz uses a context-sensitive SFI-based fuzzing approach to
explore fault space and perform fault injection, guided by a new metric named error coverage. We evaluate EH-Fuzz on 9 user-level
programs and 6 kernel-level modules, and find 45 new real bugs, 31 of which have been confirmed and fixed. We compare EH-Fuzz to
existing fuzzing approaches (including AFL, AFL++, Syzkaller, FIZZER and FIFUZZ), and EH-Fuzz finds many real bugs missed by
these approaches with higher testing coverage.

Index Terms—Error handling, coverage-guided fuzzing, software fault injection, bug detection, error coverage.
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1 INTRODUCTION

A program may encounter various kinds of possible errors,
and thus it requires error handling code to handle these
errors during execution. While error handing code is neces-
sary, it is error-prone in reality. First, error handling code is
difficult to correctly implement [1]–[4], because it involves
special and complicated semantics. Second, error handling
code is difficult to test [5]–[7], because it is infrequently
executed and receives insufficient attention. For these rea-
sons, many bugs may exist in error handling code, and they
are hard-to-find in runtime testing. Some recent works [8]–
[11] have shown that many error handling bugs can cause
serious security problems, such as denial of service (DoS)
and information disclosure.

Coverage-guided fuzzing is a promising bug-detection
technique, which uses program feedback to guide test-
case generation in runtime testing. Existing fuzzing ap-
proaches [12]–[29] focus on generating program inputs as
test cases to cover infrequently-executed code, including
error handling code. However, a large part of error handling
code is caused by occasional errors (such as insufficient
memory and network-connection failures), which are un-
related to program inputs, so existing fuzzing approaches
cannot cover such error handling code. Software fault injec-
tion (SFI) is a common technique of testing error handling
code. It intentionally injects faults or errors into the code of
the tested program, and then executes the program to test
whether it can correctly handle the injected faults or errors at
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runtime. However, existing SFI-based approaches [30]–[38]
often inject single or random faults, without exploring fault
space using program feedback, so they are limited in testing
error handling code executed in complicated contexts.

To improve testing of error handling code, several re-
cent approaches [39]–[42] introduce SFI in coverage-guided
fuzzing to explore fault space. These approaches perform
error mutation to generate injected faults, and use code
coverage to guide both SFI-based fuzzing and input-driven
fuzzing together. However, these approaches still have two
main limitations in practice. On the one hand, an error
site can be executed in different execution contexts, and
code coverage cannot reflect such context information. For
example, if two test cases trigger the same error sites in
different execution contexts, these approaches consider the
two test cases to be identical for testing error handling code;
but many error handling bugs only occur in specific exe-
cution contexts, so the two test cases are actually different
for error mutation. On the other hand, these approaches
fail to identify whether the new code is covered exactly
due to error mutation or input mutation, and thus they
have to randomly select error mutation or input mutation in
test-case generation. For example, some new code branches
are covered due to program inputs, but these approaches
may mistakenly consider that fault injection increases code
coverage and thus identify the current injected faults are
interesting for error mutation.

In this paper, to effectively detect bugs in error han-
dling code, we propose a novel error-coverage-guided SFI-
based fuzzing approach. This approach uses a new metric
named error coverage to guide fault injection and fault-space
exploration, instead of using code coverage. Error coverage
is specifically described by error sequence, containing the
covered error points and their execution states (failure or
success), and each error point includes the location and
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calling context of a covered error site. With error coverage,
this approach can also smoothly separate SFI-based fuzzing
and input-driven fuzzing, to optimize test-case generation
of injected faults and program inputs. Specifically, SFI-based
fuzzing mutates and generates possible error sequences,
each of which contains multiple error points for fault in-
jection, if new error sequences are actually covered; input-
driven fuzzing mutates and generates program inputs, if
new code branches containing no error site are covered.

Based on our fuzzing approach, we design a new fuzzing
framework named EH-Fuzz. At compile time, to reduce
manual work of identifying error sites, EH-Fuzz performs
a static analysis of the source code of tested programs, to
identify possible error sites. The user can select realistic error
sites that can actually fail and trigger error handling code.
Then, EH-Fuzz uses our error-coverage-guided SFI-based
fuzzing approach with input-driven fuzzing, to test both
error handling code and normal-execution code.

We have implemented EH-Fuzz based on our previ-
ous SFI-based fuzzing tool FIFUZZ [42]. Overall, EH-Fuzz
makes two new methodology improvements over FIFUZZ.
First, FIFUZZ uses code coverage to guide both SFI-based
fuzzing and input-driven fuzzing; while EH-Fuzz uses error
coverage and error-unrelated code coverage to guide SFI-
based fuzzing and input-driven fuzzing, respectively. Sec-
ond, FIFUZZ performs SFI-based fuzzing and input-driven
fuzzing together, by randomly using error mutation or input
mutation; while EH-Fuzz performs SFI-based fuzzing and
input-driven fuzzing separately, by smartly scheduling error
mutation and input mutation. Due to the two new improve-
ments, compared to FIFUZZ, EH-Fuzz is more effective in
both SFI-based fuzzing and input-driven fuzzing to find
more deep bugs. Besides, EH-Fuzz has fewer false positives
in error-site extraction, and it can also test kernel-level
modules that are not supported by FIFUZZ.

Overall, we make the following technical contributions:

• We first reveal the limitations of existing SFI-based
fuzzing approaches in testing error handling code.
Then, to solve these limitations, we propose a novel
error-coverage-guided SFI-based fuzzing approach,
with two benefits: (1) it collects the covered error
points and their execution states as error coverage,
to effectively guide fault injection and fault-space ex-
ploration; (2) it smoothly separates SFI-based fuzzing
and input-driven fuzzing, to optimize test-case gen-
eration of injected faults and program inputs.

• Based on our fuzzing approach, we design a new
fuzzing framework named EH-Fuzz, to effectively
test error handling code. EH-Fuzz can test both user-
level applications and kernel-level modules.

• We evaluate EH-Fuzz on 9 user-level applications of
the latest versions and 6 kernel-level modules (in-
cluding 4 filesystems and 2 device drivers) in Linux
5.16.16. EH-Fuzz finds 45 new real bugs, and 31 of
them have been confirmed and fixed by the related
developers. Moreover, we compare EH-Fuzz to five
existing fuzzing approaches (including AFL, AFL++,
Syzkaller, FIZZER and FIFUZZ), and EH-Fuzz finds
many bugs missed by these approaches with higher
testing coverage.

The rest of this paper is organized as follows. Section 2
introduces the background and motivation. Section 3 in-
troduces our error-coverage-guided SFI-based fuzzing ap-
proach. Section 4 introduces EH-Fuzz and its implemen-
tation. Section 5 shows our evaluation. Section 6 makes a
discussion about EH-Fuzz. Section 7 presents related work,
and Section 8 concludes this paper.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce error handling code with
a real bug example, and then analyze existing SFI-based
fuzzing approaches to reveal their main limitations in test-
ing error handling code.

2.1 Error Handling Code

A program may encounter exceptional situations at runtime,
due to special execution conditions like invalid program in-
puts, insufficient memory and network-connection failures.
We refer to such exceptional situations as errors, and the
code used to handle an error is called error handling code.

In fact, errors can be classified into two categories: input-
related errors and occasional errors. An input-related error
is caused by invalid inputs, such as abnormal commands
and bad data. Such an error can be triggered by providing
specific program inputs. An occasional error is caused by an
exceptional event that occasionally occurs, such as insuffi-
cient memory or network-connection failure. Such an error
is related to the state of execution environment and system
resources (such as memory and network connection), but
unrelated to inputs, so it typically cannot be triggered by
existing fuzzing that focuses on inputs.

Several recent studies [40], [42] have shown that about
50% of the sites triggering error handling code are related
to occasional errors, and existing input-driven fuzzing tools
are ineffective in detecting bugs caused by occasional errors.

2.2 Motivating Example

Figure 1 presents a buffer-overflow bug in error handling
code of ffmpeg. The function swr_convert_internal calls
resample, which returns to the variable out count. The
function resample calls swri_realloc_audio, and it
can return the error code of swri_realloc_audio, when
av_mallocz_array in swri_realloc_audio fails and
returns NULL. In this case, the variable out count is negative
and used in the function swri_rematrix as the length for
memory copying, causing a buffer-overflow bug [43].

Indeed, this bug is hard to find in runtime testing for
three main reasons. First, the function av_mallocz_array
is used to allocate memory, and it can fail only when an
occasional error of insufficient memory occurs. Second, even
though one can make av_mallocz_array fail by fault
injection or memory exhaustion, the bug is only triggered
in a special execution context, namely this failure hap-
pens when resample calls swri_realloc_audio. We
find that the function swr_convert_internal also di-
rectly calls swri_realloc_audio before resample, and
once av_mallocz_array in swri_realloc_audio fails
before resample, the function swr_convert_internal
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int swr_convert_internal(...) {
 ......
 if (swri_realloc_audio(a1, count1) < 0)

 return ret;
 ......
 // resample() calls swri_realloc_audio()    
 // via multiple functions, with arguments 
 // a2 and count2, and it can return the 
 // error code of swri_realloc_audio()
 out_count = resample(...);
 ......
 swri_rematrix(..., out_count);
 ......
 return out_count;

}

int swri_realloc_audio(AudioData *a, int count) {
 ......
 // a->count and count are input-related
 if (a->count >= count) return 0;
 ......
 a->data = av_mallocz_array(...); // Can fail
 if (!a->data)

 return -ENOMEM;
 ......

}

int swri_rematrix(..., int len) {
 ......
 memcpy(..., ..., len*out->bps); // Overflow!
 ......

}

Fig. 1. Buffer-overflow bug in error handling code of ffmpeg.

TABLE 1
Comparison of state-of-the-art SFI-based fuzzing approaches.

Approach Tested
programs

Contexts of
inject faults

Program
feedback

Compatible with
input mutation

POTUS [39] Kernel Neglect CodeCov None
FIZZER [40] Kernel Neglect CodeCov None
iFIZZ [41] FW App Consider CodeCov None
FIFUZZ [42] App Consider CodeCov Weak
EH-Fuzz Kernel+App Consider CodeCov+ErrCov Good

returns directly without calling swri_rematrix or trig-
gering the bug. Third, the bug is also related to pro-
gram inputs, as the variables a->count and count in
swri_realloc_audio are input-related. Specifically, if
a->count is not smaller than count due to program in-
puts, swri_realloc_audio directly returns without call-
ing av_mallocz_array, and thus the bug cannot occur in
this case. Due to the three reasons, the bug had existed for
over 7 years before the developer fixed it in December 2021,
according to a bug report of our framework EH-Fuzz.

2.3 State of the Art of SFI-Based Fuzzing
Several recent fuzzing approaches [39]–[42] introduce soft-
ware fault injection (SFI) and “fuzz” injected faults to trigger
infrequently-executed error handling code. They first iden-
tify error sites with static analysis and manual selection;
and then they mutate and generate error-related test cases,
which describe the injected faults into the identified error
sites, according to code coverage. Table 1 shows the com-
parison between these approaches. POTUS and FIZZER are
designed to test kernel-level drivers, but they neglect the ex-
ecution contexts of injected faults and lack input mutation.
iFIZZ is designed to test IoT firmware applications, and it
considers the execution contexts of injected faults, but it has
no input mutation. FIFUZZ is the most advanced SFI-based
fuzzing approach, by considering the execution contexts of
injected faults and supporting input mutation. It is designed
to test user-level applications. To be compatible with input-
driven fuzzing, FIFUZZ randomly selects error mutation or
input mutation, when new code branches are covered.

Although existing SFI-based fuzzing approaches have
shown good results in finding error handling bugs, they still
have two main limitations in testing error handling code:

L1) Ineffective code-coverage feedback in SFI-based fuzzing.
Code coverage is useful to reflecting whether error handling
code is covered, but it cannot reflect the runtime contexts
of the covered error handling code. Indeed, an error site
can be executed in different runtime contexts, and thus
bugs hidden in its error handling code can be triggered
only in specific runtime contexts. FIFUZZ and iFIZZ con-
sider the calling contexts of error sites in fault injection,

Test case T1:
swri_realloc_audio(a1, count1);

 “a->count >= count” is false;
    “a->data = av_mallocz_array(...)” succeeds;
resample(…);

 swri_realloc_audio(a2, count2);
      “a->count >= count” is true;

swri_rematrix(..., out_count);

Test case T2:
swri_realloc_audio(a1, count1);

 “a->count >= count” is false;
    “a->data = av_mallocz_array(...)” succeeds;
resample(…);

 swri_realloc_audio(a2, count2);
 “a->count >= count” is false;

      “a->data = av_mallocz_array(...)” succeeds;
swri_rematrix(..., out_count);

T1 and T2 cover identical code branches, so T2 is uninteresting for error mutation?

Fig. 2. Example test cases for the code in Figure 1.

but fail to consider such context information in program
feedback for error mutation. For example in Figure 2, there
are two test cases T1 and T2 shown in Figure 1, and T1
covers all the code branches covered by T2. Suppose that
T1 is executed before T2, so existing SFI-based fuzzing
approaches consider that T2 is uninteresting for error mu-
tation, due to the same code coverage. But in fact, T2 is
actually interesting for error mutation, because the second
call to av_mallocz_array in T2 is executed in a differ-
ent call context (resample→av_mallocz_array) from
T1. If error mutation is performed on T2, namely making
av_mallocz_array in swri_realloc_audio called by
resample fail, the buffer-overflow bug in Figure 1 will be
found. However, existing SFI-based fuzzing approaches lack
this error mutation and thus miss the bug, because they
consider T2 to be uninteresting.

L2) Weak compatibility with input-driven fuzzing. FIFUZZ
is the sole existing SFI-based fuzzing approach that is com-
patible with input-driven fuzzing. It randomly selects error
mutation or input mutation in test-case generation, when
new code branches are covered. However, this compati-
bility is weak, because FIFUZZ fails to identify whether
these new code branches are covered exactly due to fault
injection or program inputs. For example, some new code
branches are covered due to program inputs, but FIFUZZ
may mistakenly consider that fault injection increases code
coverage, and thus identifies the current injected faults to
be interesting for error mutation. Even if FIFUZZ can make
clear identification for code coverage, it is still limited in SFI-
based fuzzing, as code coverage cannot reflect the runtime
contexts of the covered error handling code.

Besides the above two methodology limitations, a practi-
cal limitation is that existing SFI-based approaches can only
test user-level applications or kernel-level modules, without
testing them both, which limits the generality.

3 APPROACH

In this section, we first introduce our basic idea of solving
the limitations of existing SFI-based fuzzing, then describe
our error model, and finally introduce our SFI-based fuzzing
approach and its compatibility with input-driven fuzzing.

3.1 Basic Idea
To improve fuzzing in testing error handling code, we need
to address the two main limitations of existing SFI-based
fuzzing (described in Section 2.3) from two aspects:

For L1, we need to use a new coverage metric named
error coverage, to replace code coverage in SFI-based fuzzing.
This error coverage should reflect the runtime contexts and
execution situations of error sites. In our previous approach
FIFUZZ, we proposed to use error points, each of which
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includes the location and calling context of a covered er-
ror site, for context-sensitive fault injection. Thus, we can
combine the covered error points and their execution states
(failure or success) as an error sequence, to describe error cov-
erage. Specifically, if a new error sequence is actually cov-
ered, namely new error points are covered or new execution
situations of old error points are covered, we consider that
error coverage is increased, and thus the current injected
faults are interesting for subsequent error mutation.

For L2, we need to separate SFI-based fuzzing from
input-driven fuzzing, to optimize test-case generation of
injected faults and program inputs. Specifically, we can use
error coverage for error mutation to generate new error-
related test cases, while use error-unrelated code coverage
for input mutation to generate new input-related test cases.
This error-unrelated code coverage can be described as the
covered code branches containing no error site. In this
way, SFI-based fuzzing and input-driven fuzzing can be
performed separately, without side effect on each other.

3.2 Error Model

In our basic idea, error point is vital for performing context-
sensitive fault injection and describing error coverage. Thus,
we first introduce error point and the related error model in
SFI-based fuzzing before presenting our approach.

An error point represents an execution point where an
error can occur and trigger error handling code. During
fault injection, each error point can normally run (indicated
as 0) or fail by an injected fault (indicated as 1). While the
program is tested, multiple error points can be executed,
forming an 0-1 error sequence that describes the failure situa-
tion of error points at runtime:

ErrSeq = [ErrPt1, ErrP t2, ..., ErrP tx], ErrP ti = {0, 1}

In most existing SFI-based approaches, error point is
context-insensitive, as they only use the location of each
error site in source code to describe an error point, namely
ErrPt =< ErrLoc >, without considering the execution
context of this error site. In this way, if a fault is injected
into an error site, this error site will always fail when being
executed at runtime. But an error site can be executed in
different calling contexts, and some real bugs (such as the
buffer-overflow bug shown in Figure 1) can be triggered
only when this error site only fails in specific calling context
and succeeds in other calling contexts. Thus, existing SFI-
based approaches may miss these real bugs. To solve this
problem, we make error point context-sensitive, by consid-
ering the location and calling context of each error site:

ErrPt =< ErrLoc, CallCtx >

To describe the calling context of an error site, we con-
sider the runtime call stack when the error site is executed.
This runtime call stack includes the information of each
function call at the call stack (in order from caller to callee),
including the locations of this function call and called func-
tion. In this way, a calling context is described as:

CallCtx = [CallInfo1, CallInfo2, ..., CallInfox]

CallInfo =< CallLoc, FuncLoc >

Note that the runtime call stack of an executed error site
is related to program execution. Thus, error points cannot
be statically determined, and they should be dynamically
identified during program execution. Accordingly, when
fault injection is performed with a possible error sequence,
the faults should be injected into error points during pro-
gram execution. Moreover, if an error site is executed in
N different calling contexts, there will be N different error
points, which are used for context-sensitive fault injection
and error-coverage collection.

3.3 Error-Coverage-Guided SFI-based Fuzzing

Based on our basic idea and error model, we propose a
novel error-coverage-guided SFI-based fuzzing approach, to
effectively cover error handling code executed in different
runtime contexts and perform fault-space exploration. As
shown in Figure 3, our approach has six basic steps:

(S1) At compile time, it identifies possible error sites in
the program code, and the user can select realistic ones;

(S2) It runs the tested program and collects runtime
information about each executed error site;

(S3) It identifies the covered error points and their execu-
tion situations, to collect the covered error sequence as error
coverage according to runtime information;

(S4) After program execution, if a new error sequence is
actually covered within the time limit, it mutates and gen-
erates new possible error sequences containing the covered
error points for fault injection.

(S5) It runs the tested program and injects faults into
error sites in specific calling contexts, according to the
generated possible error sequences.

(S6) It collects runtime information, identifies the cov-
ered error sequence and generates new possible error se-
quences again, which constructs a fuzzing loop.

SFI-based Fuzzing Loop

Identify error sites

Run the tested program

Cover new 
error sequence within the 

time limit?

End

Collect runtime information

Run the tested program

Perform fault injection with 
possible error sequences

N

Mutate and generate 
possible error sequences

Y

Identify the covered 
error sequence

Fig. 3. Procedure of our SFI-based fuzzing approach.

Note that each possible error sequence is inferred from
the last execution of the tested program to perform fault
injection. Thus, after fault injection with this sequence, some
error points in it may not be covered in real execution,
and even some new error points can be also covered. In
this case, the possible error sequence can lead to a different
covered error sequence after fault injection. To handle this
case, our approach maintains two sets of error sequences,
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Initial error sequence

First running Initial mutation

Generated possible 
error sequences

ErrPta
0

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
0

ErrPtc
1

ErrPtd
0

ErrPta
0

ErrPtb
0

ErrPtc
0

ErrPtd
1

Tested 
Program

Fig. 4. Example of initial error mutation.

Possible error sequence

Mutation

Generated possible 
error sequences

ErrPta
1

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtc
1

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtc
0

ErrPtd
1

Tested 
Program

Execution

Fault injection

Error coverage is increased by 
covering new error sequence!

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
0

A new error point is executed 

Mutation

Covered error sequence is new

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
1

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
1

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtx

1
ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtx

0
ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
0

Possible error sequence

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

Tested 
Program

Execution

Fault injection

Error coverage is not increased without 
covering new error sequence!

Drop possible error sequence

Drop repeated error sequences

ErrSeq2

ErrSeq1

Fig. 5. Example of subsequent error mutation.

namely one set is for the generated possible ones to perform
fault injection, and the other set is for the covered ones to
describe error coverage.

In our approach, mutating and generating possible error
sequences are important operations, which are performed
according to the covered error sequences during program
execution. Initially such information is unavailable, and
thus our approach performs a special initial mutation for
the first execution of the tested program. For subsequent ex-
ecutions, our approach performs the subsequent generation
and mutation of error sequences. All the generated error
sequences that cover the new error points are stored in a
pool for error mutation.

Initial error mutation. Our approach first runs the tested
program normally, and creates an initial error sequence
according to runtime information. This error sequence con-
tains the executed error points, and it is all-zero and used
for the initial mutation. The mutation generates each new
error sequence by making just one executed error point
fail (0→1), as each error point may trigger uncovered error
handling code in the related calling context. Figure 4 shows
an example of the initial mutation for an error sequence,
which generates four new possible error sequences.

Subsequent error mutation. After our approach runs the
tested program by injecting faults according to a possible
error sequence, it checks whether the covered error sequence
of this running is new among the already covered error
sequences. If not, our approach drops this possible error
sequence for error mutation, as error coverage is not im-
proved; if so, our approach mutates both this possible error
sequence and the covered error sequence to generate each
new possible error sequence, by changing the value of just
one error point (0→1 or 1→0). Then, our approach compares

Error sequences

Tested 
Program

Program inputs

Error coverage

Error-unrelated 
code coverage

Guide the generation of 
program inputs

Guide the generation of 
error sequences

Error mutation Input mutation

Error coverage is not increased 
after providing N error sequences

Error-unrelated code coverage is not 
increased after providing N program inputs

(a) Separate feedback of test-case generation

(b) Greedy strategy of mutation scheduling

Fig. 6. Cooperation of SFI-based fuzzing and input-driven fuzzing.

these generated error sequences with all existing possible
and already covered error sequences, to drop repeated ones.
Figure 5 shows an example of this procedure for two error
sequences, For the first possible error sequence ErrSeq1, a
new error point ErrPtx is executed, and a covered error
sequence containing this error point is collected. As this
covered error sequence is new, which increases error cov-
erage, our approach mutates the possible and covered error
sequences to generate nine new possible error sequences.
However, one of them is the same with an existing possible
error sequence ErrSeq2, so this new error sequence is
dropped. For the second possible error sequence ErrSeq2,
error coverage is not increased without covering new error
sequence, our approach drops it for error mutation.

Note that each error point in a possible error sequence
is related to the runtime calling context, and thus when
injecting faults into this error point during program exe-
cution, our approach needs to dynamically check whether
the current runtime calling context and error sites match the
target error point. If this error point is not executed during
program execution, our approach will ignore this error point
in error-coverage collection and error mutation.

3.4 Cooperation with Input-Driven Fuzzing
By using error coverage, our approach can clearly identify
how fault injection or program inputs improve the testing
coverage, especially for covering error handling code. In this
way, our approach can smoothly separate SFI-based fuzzing
and input-driven fuzzing, to optimize test-case generation
of injected faults and program inputs.

Figure 6(a) shows the separate feedback of test-case
generation with different coverage metrics. For a given
program input, our approach identifies the covered code
branches containing no error site, to describe error-unrelated
code coverage. If this coverage is increased, the program
input is considered to be interesting, and it is stored in a
seed pool for input mutation. For a possible error sequence
used in fault injection, our approach identifies the covered
error sequence, to describe error coverage. If this coverage is
increased, the possible and covered error sequences are both
considered to be interesting, and they are stored in a seed
pool (different from the input seed pool) for error mutation.
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To smartly schedule input mutation and error mutation,
our approach uses a greedy strategy shown in Figure 6(b).
Our approach first performs error mutation to increase error
coverage. If error coverage is not increased after providing
N error sequences in fault injection, our approach performs
input mutation to increase error-unrelated code coverage.
If this code coverage is not increased after providing N
program inputs, our approach performs error mutation to
increase error coverage again. In this way, our approach can
efficiently improve both error coverage and error-unrelated
code coverage, to maximize the effectiveness of both SFI-
based fuzzing and input-driven fuzzing. Note that we set N
as 10% of the executed test cases in the evaluation, according
to our experience. We will experimentally study the effect of
this value in Section 5.6.

In fact, input mutation and error mutation can also
benefit each other. On the one hand, input mutation can
help cover more input-related code, which can have new
error sites. Thus, these new error sites can be used by error
mutation to achieve higher error coverage. On the other
hand, error handling code covered by error mutation may
have input-related code, which can have code branches af-
fected by program inputs. Thus, these code branches can be
covered by input mutation to achieve higher code coverage.
However, the latter case is not common in our experience,
and thus its effect is not very obvious.

4 EH-FUZZ FRAMEWORK

Based on our error-coverage-guided SFI-based fuzzing ap-
proach, we design and implement a new fuzzing framework
named EH-Fuzz, to test error handling code and detect
bugs. We have implemented EH-Fuzz based on Clang [44]
and our previous approach FIFUZZ [42]. We implement
input-driven fuzzing in EH-Fuzz by referring to AFL++ [17]
for user-level applications and Syzkaller [45] for kernel-
level modules. EH-Fuzz performs code instrumentation and
program analysis on the LLVM bytecode of the program.
Figure 7 shows its architecture that has six modules:

• Error-site extractor. It performs an automated static
analysis of the source code of the tested program, to
identify possible error sites.

• Program generator. It instruments the program code,
including the selected error sites, function calls, func-
tion entries and exits, code branches, etc. It generates
an executable tested program.

• Runtime monitor. It runs the tested program with
the generated inputs, collects runtime information of
the tested program (including error coverage, error-
unrelated code coverage, memory access informa-
tion, etc.), and performs fault injection according to
the generated possible error sequences.

• Error-sequence generator. It performs error mutation
to generate new possible error sequences, according
to error coverage.

• Input generator. It performs traditional input muta-
tion to generate new program inputs, according to
error-unrelated code coverage.

• Bug checkers. They check the collected runtime infor-
mation to detect bugs and generate bug reports.

Source Files of the 
tested program

Program 
Generator

Runtime 
Monitor

Executable 
Program

Error-Sequence 
Generator

Input
Generator

Error-unrelated 
Code Coverage

Error Sequences

Program Inputs

Recommended 
Error Sites

Bug Checkers

Error-Site 
Extractor

Original 
Program Inputs

Runtime Information

Bug Reports

Error Coverage

Fig. 7. Overall architecture of EH-Fuzz.

Based on the above architecture, EH-Fuzz consists of two
phases, namely compile-time analysis and runtime fuzzing.

4.1 Phase 1: Compile-Time Analysis

In this phase, EH-Fuzz performs two main tasks:
Error-site extraction. For SFI-based approaches, the in-

jected errors should be realistic. Otherwise, the found bugs
might be false positives. To ensure that injected errors are
realistic, many SFI-based approaches [32], [34], [37] require
the user to manually provide error sites, which needs much
manual work and cannot scale to large programs. To reduce
manual work, the error-site extractor uses a static analysis
of the program code to identify possible error sites, from
which the user can select realistic ones.

Our analysis extracts specific function calls as error sites,
because recent works [30], [40], [42] show that most error
sites are code statements checking error-indicating return
values of function calls. Our analysis has three steps:

S1: Identifying candidate error sites. In many cases, a func-
tion call returns a null pointer or negative integer to indicate
a failure. Thus, our analysis identifies a function call as a
candidate error site if: 1) it returns a pointer or integer; and
2) the return value is checked by an if statement with NULL
or zero. The function call to av malloc array in Figure 1 is an
example that satisfies the two requirements. Moreover, to
improve accuracy, our analysis also performs an Andersen-
style method [46] to identify the variables aliased with each
return value. If one of these variables is checked by an if
statement, the return value is also considered to be checked.

S2: Selecting interface functions. In most cases, a function
defined in the tested program can fail, as it calls specific
interface functions that can fail. For user-level applications,
these interface functions are defined in external libraries; for
kernel-level modules, these interface functions are defined
in the kernel core. If the calls to these interface functions
and their callers are both considered as error sites for fault
injection, repeated faults may be injected. To avoid such
repetition, from all the identified function calls, our anal-
ysis only selects those whose called functions are interface
function externally defined outside the tested program.

S3: Performing statistical analysis. In some cases, a function
can actually fail and trigger error handling, but the return
values of several calls to this function are not checked by if
statements. To handle such cases, our analysis uses a statisti-
cal method to extract functions that can fail from the identi-
fied function calls, and we refer to such a function as an error
function. At first, this method classifies the selected function
calls by called function, and collects all function calls to each
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called function in the tested program code. Then, for the
function calls to a given function, this method calculates
the percent of them whose return values are checked by if
statements. If this percent is larger than a threshold R (set as
0.6 in our evaluation), this method identifies this function as
an error function. Finally, this method extracts all function
calls to this function are possible error sites. For accuracy
and generality, when testing multiple user-level applications
or kernel modules, this method analyzes these applications’
code together or the whole kernel code.

In S3, the value of the threshold R heavily affects the
identified error functions and identified error sites (function
calls). If R is too small, many unrealistic error functions will
be identified, which may introduce many false positives in
bug detection; if R is too large, many realistic error functions
will be missed, which may introduce many false negatives
in bug detection. Thus, we select R as 0.6 in the evaluation,
as it is not too small or large. Besides, we will experimentally
study the effect of this value in Section 5.2.

Code instrumentation. This task is performed for two
purposes: intercepting error points and collecting error-
unrelated code coverage.

Error points are intercepted to collect error coverage and
perform fault injection. To record the runtime calling context
of each error site, the program generator instruments code
before and after each function call to each function defined
in the tested program code, and at the entry and exit of each
function definition. During program execution, the runtime
calling context of each error site and its location are collected
to create an error point. To monitor the execution states
of error points and perform fault injection at runtime, the
program generator instruments code before each identified
error site. For execution monitoring, if an error point fails
at runtime, its value in the covered error sequence is 1;
otherwise, its value is 0. For fault injection, if an error point’s
value in the possible error sequence is 1, a fault is injected
into this error point. To inject a fault, the function call of the
error site is not executed, and its return value is assigned
to a null pointer or a random negative integer. If the error
point’s value in the possible error sequence is 0, the function
call of the error site is normally executed.

To collect error-unrelated code coverage, the program
generator needs to identify error-related code branches. For
this purpose, the program generator first extracts the basic
blocks containing the identified error sites, and then identi-
fies the code branches passing any of these basic blocks to be
error-related. After that, the program generator instruments
all the code branches in the tested program, except for the
identified error-related ones.

4.2 Phase 2: Runtime Fuzzing

In this phase, with the identified error sites and instru-
mented program, EH-Fuzz performs our error-coverage-
guided SFI-based fuzzing approach with traditional input-
driven fuzzing, to test the program and detect bugs.

The runtime fuzzer executes the tested program using
the program inputs generated by input-driven fuzzing pro-
cess, and injects faults into the program using the possible
error sequences generated by our SFI-based fuzzing ap-
proach. It also collects runtime information about executed

error points, error-unrelated code branches, etc. The error-
sequence generator mutates and generates new possible er-
ror sequences, according to error coverage; the input gener-
ator mutates and generates new program inputs, according
to error-unrelated code coverage. Then, EH-Fuzz combines
the generated possible error sequences and program inputs
together, and uses them to execute the tested program again.
To detect bugs, the bug checkers (such as ASan [47] and
MSan [48]) analyze the collected runtime information about
memory accesses during fuzzing.

To improve testing performance and correctness, we use
two practical techniques in the runtime fuzzer:

Performance enhancement of information collection. The run-
time fuzzer can affect the performance of the tested pro-
gram, because the tested program’s threads need to execute
much extra code and perform extra synchronization for
information collection. To enhance the performance, the
runtime fuzzer uses a separate thread and message passing
to perform information collection, which can minimize the
extra code executed by the tested program’s threads and
avoid extra synchronization. Specifically, each thread of the
tested program executes a little extra code to wrap useful
code information in a message that is put in a message
queue, and the separate thread fetches all the messages from
the message queue to perform information ordering and
collection with synchronization.

Interrupt handling in kernel-level modules. A kernel module
can raise interrupts during execution, causing the interrupt-
handler code to be executed in the current thread’s context.
If the current thread belongs to the tested kernel module, the
runtime fuzzer may record an incorrect calling context that
mixes interrupt handler context with the kernel module con-
text. For example, when an interrupt occurs while a kernel
module function ModFunc is executed, the kernel module
can suspend executing ModFunc to execute the interrupt
handler function IntrFunc. In this case, the runtime fuzzer
may mistakenly consider IntrFunc is called by ModFunc, and
thus may identify incorrect calling contexts of the executed
error sites. To solve this problem, the runtime fuzzer calls
the Linux kernel interface in_interrupt to check whether
the currently executed function is in interrupt handler. If so,
the runtime fuzzer regards the interrupt handler as being
executed in a separate thread, to maintain a special calling
context of the interrupt handler.

4.3 Improvements over FIFUZZ

Compared to our previous fuzzing approach FIFUZZ [42],
EH-Fuzz has two new methodology improvements. First,
FIFUZZ uses code coverage to guide both SFI-based fuzzing
and input-driven fuzzing; while EH-Fuzz uses error cov-
erage and error-unrelated code coverage to guide SFI-
based fuzzing and input-driven fuzzing, respectively. Sec-
ond, FIFUZZ performs SFI-based fuzzing and input-driven
fuzzing together, by randomly using error mutation or input
mutation; while EH-Fuzz performs SFI-based fuzzing and
input-driven fuzzing separately, by smartly scheduling error
mutation and input mutation. Due to the two new improve-
ments, compared to FIFUZZ, EH-Fuzz is more effective in
both SFI-based fuzzing and input-driven fuzzing to find
more deep and complex bugs.
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TABLE 2
Basic information of the tested programs.

Program Description Version LOC
vim Text editor v8.2.3595 540K
bison Parser generator v3.8.1 92K
ffmpeg Solution for media processing v4.4.1 1.1M
nasm 80x86 and x86-64 assembler v2.15.05 105K
catdoc MS-Word-file viewer v0.95 4K
clamav Antivirus engine v0.104.1 219K
cflow Code analyzer of C source files v1.7 34K
gif2png+libpng File converter for pictures v2.5.14+v1.6.3 59K
openssl Cryptography library v3.0.0 516K
btrfs Linux BTRFS filesystem Linux 5.16.16 105K
xfs Linux XFS filesystem Linux 5.16.16 97K
jfs Linux JFS filesystem Linux 5.16.16 17K
cephfs Linux Ceph filesystem Linux 5.16.16 22K
xhci Intel USB 3.0 host driver Linux 5.16.16 65K
vmxnet3 Vmware virtual network driver Linux 5.16.16 5K

In addition, EH-Fuzz has two implementation improve-
ments over FIFUZZ. First, EH-Fuzz handles the alias rela-
tionship of each function-call return value while FIFUZZ
neglects, and thus EH-Fuzz produces fewer false positives
in error-site extraction, which can reduce manual work
of selecting realistic error sites. Second, FIFUZZ can only
test user-level applications; while EH-Fuzz is applicable to
both user-level applications and kernel-level modules, by
enhancing information-collection performance and consid-
ering interrupt handling.

5 EVALUATION

5.1 Experimental Setup

To validate the effectiveness of EH-Fuzz, we evaluate it on 9
popular user-level C applications of the latest versions as of
our evaluation, as well as 6 common kernel-level modules
(4 filesystems and 2 device drivers) in Linux 5.16.16. The
basic information of these 15 tested programs are listed in
Table 2 (the lines of source code are counted by CLOC [49]).
The experiment runs on a regular desktop with eight Intel
i7-3770@3.40G processors and 16GB physical memory. The
code compiler is Clang 12.0 [44], and the OS is Ubuntu 20.04.

5.2 Error-Site Extraction

Before testing the 15 programs, EH-Fuzz first performs a
static analysis of their source code to identify possible error
sites, and then we manually select realistic ones that can
actually fail and trigger error handling code, according to
the related source code. Table 3 shows the results, when we
set R as 0.6. The first column presents the program name; the
second column presents the number of all function calls in
the program code; the third column presents the number of
error sites identified by EH-Fuzz; the last column presents
the number of realistic error sites that we manually select.

In total, EH-Fuzz identifies 157 error functions, and ex-
tract 5,370 function calls to these functions as possible error
sites. Among them, we manually identify 122 realistic error
functions and 3,001 function calls to these functions as real-
istic error sites, achieving a false positive rate of 44%. This
rate is lower than that of our previous approach FIFUZZ
(81%), as EH-Fuzz handles the alias relationship of each
function-call return value while FIFUZZ neglects. In fact, the
manual selection of realistic error sites is easily manageable

TABLE 3
Results of error-site extraction.

Program Function call Identified Realistic
vim 83,129 334 (0.40%) 265 (79.34%)
bison 16,464 187 (1.14%) 129 (68.98%)
ffmpeg 473,450 198 (0.04%) 103 (52.02%)
nasm 11,162 62 (0.56%) 28 (45.16%)
catdoc 1,322 101 (7.64%) 69 (68.32%)
clamav 124,350 2,125 (1.71%) 1,247 (58.68%)
cflow 3,738 117 (3.13%) 84 (71.79%)
gif2png+libpng 16,317 129 (0.79%) 65 (50.39%)
openssl 372,715 135 (0.04%) 102 (75.56%)
btrfs 158,098 929 (0.59%) 351 (37.78%)
xfs 165,786 201 (0.12%) 171 (85.07%)
jfs 24,003 114 (0.47%) 100 (87.72%)
cephfs 34,470 460 (1.33%) 140 (30.43%)
xhci 14,419 180 (1.25%) 104 (57.78%)
vmxnet3 5,896 98 (1.66%) 43 (43.88%)
Total 1,505,319 5,370 (0.36%) 3,001 (55.88%)
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Fig. 8. Variation of error functions affected by the value of R.

and not hard, as many error sites call the same functions and
checking each error site does not require much program-
specific knowledge. One master student spent 4 hours on
the manual selection of these error sites in the 15 tested pro-
grams, and this manual work is similar to that of FIFUZZ.
Considering that there are over 1.5M function calls in the
tested programs, EH-Fuzz drops over 99% of them, because
they are considered not to fail or trigger error handling
code, according to their contexts in source code. The results
indicate that EH-Fuzz can dramatically help reduce the
manual work of identifying realistic error sites.

As described in Section 4.1, the value of the threshold
R in our static analysis heavily affects the identified error
functions. The above results are obtained with R = 0.6. to
understand the effect of this value, we test it from 0.5 to 1
with 0.05 step, and show the results in Figure 8. We find that
the number of identified error functions and realistic error
functions are both decreased when R becomes larger. In
this case, more unrealistic error functions are dropped, but
more realistic ones are also missed. Thus, if R is too small,
many unrealistic error functions will be identified, which
may introduce many false positives in bug detection; if R
is too large, many realistic error functions will be missed,
which may introduce many false negatives in bug detection.

5.3 Runtime Testing

With the 3,001 realistic error sites shown in Table 3, we
use EH-Fuzz to test the 15 programs. Following the recom-
mendations of [50], we fuzz each program with ASan [47]
(for applications) or KASan [51] (for kernel modules) for
three times, and the fuzzing time limit is 24 hours. To count
unique bugs, we manually check their root causes with the
bug reports and source code. Table 4 shows the results.
The columns “Error sequences” and “Program inputs” show
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TABLE 4
Fuzzing results.

Program Error sequence Program input Testing coverage Found bug
Generate Interest Generate Interest ErrSeq Branch NullPtr UAF DoubleFree Overflow MemLeak InvalidPtr Assert All

vim 650,594 2,638 108,735 3,626 379,636 60,318 1 1 0 2 0 1 0 5
bison 931,504 13,552 1,379,860 1,329 210,157 20,465 0 0 0 0 0 0 0 0
ffmpeg 171,121 1,048 54,650 2,429 109,413 82,250 7 1 2 3 0 0 0 13
nasm 153,205 1,447 2,444,814 1,766 1,451 11,454 0 0 0 0 0 0 0 0
catdoc 3,027 233 130,025 148 866 1,283 4 0 0 1 0 0 0 5
clamav 150,231 753 216,588 954 41,894 24,153 0 0 1 1 0 1 0 3
cflow 2,460,190 35,771 4,189,353 596 87,824 4,581 0 0 0 1 0 0 0 1
gif2png+libpng 1,276 89 2,241,618 298 91 3,268 0 0 0 0 0 0 0 0
openssl 237,717 129,366 6,297,639 97 204,785 18,196 2 1 1 0 0 0 0 4
btrfs 1,041 881 106,546 1,228 1,041 42,427 0 1 1 0 1 0 0 3
xfs 1,448 677 157,089 1,262 990 26,413 1 0 0 0 0 0 0 1
jfs 1,725 1,019 137,838 365 1,396 9,835 1 0 0 0 0 0 1 2
cephfs 949 720 232,802 2,187 871 11,660 3 0 0 0 1 0 0 4
xhci 1,330 1,052 143,340 2,299 1,211 4,342 1 0 0 0 0 0 0 1
vmxnet3 1,694 1,088 145,498 2,440 1,474 2,553 1 1 0 0 0 0 1 3
Total 4,767,052 190,334 17,986,395 21,024 1,043,100 323,198 21 5 5 8 2 2 2 45
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Fig. 9. Interesting error sequences and inputs for vim and clamav.

the results about generated error sequences and inputs; the
column “Generate” shows the number of generated ones,
and the column “Interest” shows the number of interesting
ones that increase error coverage or error-unrelated code
coverage. The columns “ErrSeq” and “Branch” show the
number of the covered error sequences and code branches,
respectively. From Table 4, we make some observations.

Error coverage. EH-Fuzz covers many error sequences
in different contexts, and they are generated by the error
mutation according to our error coverage. In total, 4% of
the generated error sequences increase error coverage, so
they are considered to be interesting. This proportion is
larger than that (0.01%) of the generated program inputs,
so error mutation outperforms input mutation. Particularly,
the proportion of interesting error sequences in kernel-level
modules is much larger than user-level applications. Indeed,
an application test (0.16s on average) is much shorter than a
kernel test (63s on average), causing many more application
tests to be executed; because uninteresting error sequences
are often generated in the later tests, running more tests can
cause a larger proportion of uninteresting error sequences.

To better understand the variation of interesting error
sequences and program inputs, we select vim and clamav
as examples to study their results in Figure 9. We find that
the number of interesting error sequences increases quickly
during earlier tests, and then tends to be stable in the later
tests. This trend is quite similar to program inputs.

Found bugs. EH-Fuzz in total finds 45 new and unique
bugs in terms of their root causes, including 31 bugs in
user-level applications and 14 bugs in kernel-level modules.
Specifically, 39 of these bugs are caused by incorrect error
handling, and they are found by SFI-based fuzzing; the
remaining 6 bugs are caused by incorrect handling of pro-
gram inputs, and they are found by input-driven fuzzing.
We have reported all these bugs to the related developers.

Bug2 (Overflow): copy_winopt -> vim_strsave(5667) -> alloc(27) -> lalloc(151) -> malloc(244)

Bug3 (UAF):          msg_source -> vim_strsave(548) -> alloc(27) -> lalloc(151) -> malloc(244)

Bug1 (NullPtr):     main -> mch_early_init(106) -> alloc(3310) -> lalloc(151) -> malloc(244)

FILE: vim/src/main.c

94. int main(...) {
  ......

106. mch_early_init();
  ......

427. }

FILE: vim/src/os_unix.c

3290. void mch_early_init() {
       ......
3310.   signal_stack = alloc(...);

      ......
3313. }

FILE: vim/src/alloc.c

150. void *alloc(...) {
151.   return lalloc(...);
152. }

213. void *lalloc(...) {
  ......

244. p = malloc(...);
   ......
289. }

FILE: vim/src/message.c

521. void msg_source(...) {
  ......

548. name = vim_strsave(...);
  ......

551. }

FILE: vim/src/string.c

21. char_u* vim_strsave(...) {
  ......

27.  p = alloc(...);
  ......

31. }

FILE: vim/src/option.c

5599. void copy_winopt(...) {
      ......

5667.   to->wo_fdm = vim_strsave(...);
      ......

5687. }

Bug1
Bug1

Bug3

Bug2

Bug2+
Bug3

Bug1+
Bug2+
Bug3

Fig. 10. Example bugs caused by the same error site.

31 of them have been confirmed and fixed (including 19
in applications and 12 in kernel modules), and we are still
waiting for the response of the remaining ones.

Error handling bugs. The 39 found bugs related to incor-
rect error handling are caused by only 28 error sites but in
different calling contexts. 26 of the error sites are related to
memory-allocation errors. Figure 10 shows such examples
of three bugs found in vim. The three bugs are a null-
pointer dereference (Bug1), a buffer-overflow bug (Bug2)
and a use-after-free bug (Bug3), and they have different root
causes according to our manual checking. Additionally, the
developer fixes each of these bugs by modifying separate
error handling code. The text in each line presents the call
stack of error site, including the function name and code
line number of function call. The three bugs are all caused
by the failures of the function call to alloc, but the failures
occur in different calling contexts. The results confirm the
importance of considering runtime contexts of error sites in
SFI-based fuzzing.

Bug features. Reviewing the bugs found by EH-Fuzz,
we find three interesting features. First, among the 39 error
handling bugs, only 2 are triggered by two error points’
failures, and the remaining 37 bugs are triggered by only one
error point’s failure. The results indicate that error handling
bugs are often triggered by just one error in specific context.
Second, among the 10 use-after-free and double-free bugs,
8 of them are caused by missing null-pointer assignments
after freeing the pointers. Indeed, there are NULL checks be-
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FILE: ffmpeg/libavformat/aviobuf.c

921. int ffio_fdopen(AVIOContext **s, URLContext *h)
  ......

941. *s = avio_alloc_context(buffer, ...);  // s->buffer = buffer
  ......

948. (*s)->protocol_whitelist = av_strdup(...); // Can fail
949.     if (!(*s)->protocol_whitelist && h->protocol_whitelist) {
950.         avio_closep(s);
951. goto fail;
952. }

  ......
974. fail:
975. av_freep(&buffer);  // Double free!!
976. return AVERROR(ENOMEM);
977. }

1169. int avio_close(AVIOContext *s)

  ......

1180.     av_freep(&s->buffer);  // First free

  ......

1190. }

FILE: linux-5.16.16/fs/btrfs/relocation.c

 834. int btrfs_init_reloc_root(...) {
  ......

 839. struct reloc_control *rc = fs_info->reloc_ctl; // Fetch "rc"
  ......

 872. if (!rc->create_reloc_tree || ...)  // Use after free!!
 873. return 0;

  ......
 896. }

3950. int btrfs_relocate_block_group(...)
  ......

4046.     err = relocate_block_group(rc);  // Can fail
  ......

4071.     if (err < 0)
4072.    goto out;

  ……
4084. out:

  ……
4091.     free_reloc_control(rc); // Free "rc"
4092.     return err;
4093. }

FILE: linux-5.16.16/drivers/usb/host/xhci-mem.c

2242. void xhci_create_rhub_port_array(...) {
  ......

2251.     rhub->ports = kcalloc_node(...); // Can fail
2252.     if (!rhub->ports)   // Error is not propagated
2253.         return;

  ......
2266. }

FILE: linux-5.16.16/drivers/usb/host/xhci-hub.c

278. void xhci_usb2_hub_descriptor(...) {
  ......

301.  portsc = readl(rhub->ports[i]->addr);  // NPD!!
  ......

330. }
331.
333. void xhci_usb3_hub_descriptor(...) {

  ......

358.  portsc = readl(rhub->ports[i]->addr);  // NPD!!

  ......

364. }

(a) Double-free bug in ffmpeg application (b) Use-after-free bug in btrfs filesystem (c) Null-pointer dereference in xhci driver

Fig. 11. Example bugs found by EH-Fuzz.

TABLE 5
Security impact classified by bug type.

Bug type Crash/DoS Data
corruption

Memory
overread

Null-pointer dereference 21 0 0
Use after free 0 5 0
Double free 0 5 0
Buffer overflow 0 3 5
Memory leak 2 0 0
Invalid-pointer access 2 0 0
Assertion failure 2 0 0
Total 27 13 5

fore the pointers are used or freed, namely these bugs can be
avoided if these pointers are assigned to NULL. Finally, 28
of the found bugs are caused by incorrect error propagation
across functions, such as neglecting or repeatedly handling
the errors propagated from callee functions. For example
in Figure 1, the failure of the call to av_mallocz_array is
correctly handled in swri_realloc_audio, which returns
an error code -ENOMEM; but when this error is propa-
gated to swr_convert_internal through the function
call to resample, the error is neglected and passed to
swri_rematrix without error handling, causing a buffer-
overflow bug. Indeed, error propagation across functions is
error-prone, due to complex calling contexts of error sites.

5.4 Security Impact of the Found Bugs
We manually review the 45 found bugs to estimate their
security impact. The results are shown in Table 5, classified
by bug type, including null-pointer dereference, use after
free, double free, buffer overflow, memory leak, invalid-
pointer access and assertion failure. These bugs can cause
serious security problems, including denial of service (DoS),
data corruption and memory overread. Figure 11 shows
three example bugs, which have been confirmed and fixed.
Double-free bug in ffmpeg application. In Figure 11(a),
the function av_strdup on line 948 can fail due to in-
sufficient memory. In this case, avio_closep is called to
free the pointer s->buffer via av_freep on line 1180.
Then, av_freep is called again to free the pointer buffer
on line 975. Because s->buffer has been assigned with
buffer in avio_alloc_context on line 941, av_freep
is actually called twice to free the same pointer buffer,
causing a double-free bug. Once this bug is triggered, it can
be exploited to corrupt memory area pointed by buffer,
and thus to inject malicious data into the media file.

Use-after-free bug in btrfs filesystem. In Figure 11(b),
the function relocate_block_group on line 4046 can
fail due to insufficient memory. In this case, the pointer
rc is freed by free_reloc_control on line 4091, and
then an error code is returned on line 4092. However, this
error code is not properly handled by the filesystem, causing
that when the function btrfs_init_reloc_root is called
in another thread, the pointer rc can be still fetched via
fs_info->reloc_ctl on line 839. Then, rc is used to
access rc->create_reloc_tree on line 872, causing a
use-after-free bug. Once this bug is triggered, it can be
exploited to corrupt the memory area pointed by rc, and
thus to inject malicious data into the filesystem.
Null-pointer dereference in xhci driver. In Figure 11(c),
the function kcalloc_node on line 2251 can fail due to
insufficient memory, causing the pointer rhub->ports to
be NULL, but this error is not propagated to other functions.
Thus, when the functions xhci_usb2_hub_descriptor
and xhci_usb3_hub_descriptor are called to access
rhub->ports[i]->addr, a null-pointer dereference oc-
curs on lines 301 and 358, respectively. Once this bug is
triggered, it can be exploited to perform DoS attack.

5.5 Comparison to Existing Fuzzing Approaches

We select five state-of-the-art fuzzing approaches for com-
parison, including three popular input-driven fuzzing ap-
proaches (AFL [16], AFL++ [17] and Syzkaller [45]) and
two recent SFI-based fuzzing approaches (FIZZER [40] and
FIFUZZ [42]). As AFL, AFL++ and FIFUZZ can only test
user-level applications, we use them for the 9 applications
in Table 2; as Syzkaller and FIZZER can only test kernel-
level programs, we use them for the 6 kernel modules in
Table 2. Note that FIZZER lacks input-driven fuzzing, so we
run common benchmarks fstest [52], usb-tester [53] and net-
perf [54], for the four filesystems (btrfs, xfs, jfs and cephfs), xhci
USB host driver and vmxnet3 network driver, respectively.
Following the recommendations of [50], we use EH-Fuzz
and these approaches to test each program with ASan [47]
(for applications) or KASan [51] (for kernel modules) for
three times, and the fuzzing time limit is 24 hours. Table 6
shows the results, and we make several observations.

Code coverage. Compared to the five existing fuzzing ap-
proaches, EH-Fuzz has higher code coverage in most of the
15 tested programs, as it covers more error handling code.
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TABLE 6
Comparison results of EH-Fuzz and five existing fuzzing approaches.

Program AFL AFL++ Syzkaller FIZZER FIFUZZ EH-Fuzz
Branch Bug Branch Bug Branch Bug Branch ErrSeq Bug Branch ErrSeq Bug Branch ErrSeq Bug

vim 49,010 0 64,717 0 - - - - - 34,621 1,855 1 60,318 379,636 5
bison 18,240 0 20,583 0 - - - - - 18,107 498 0 20,465 210,157 0
ffmpeg 42,201 0 63,988 2 - - - - - 54,009 789 5 82,250 109,413 13
nasm 10,772 0 11,949 0 - - - - - 10,563 148 0 11,454 1,451 0
catdoc 1,167 2 1,210 2 - - - - - 1,257 168 3 1,283 866 5
clamav 23,115 0 24,105 0 - - - - - 18,023 137 2 24,153 41,894 3
cflow 4,332 0 4,577 1 - - - - - 4,350 98 0 4,581 87,824 1
gif2png+libpng 2,534 0 3,044 0 - - - - - 2,200 66 0 3,268 91 0
openssl 17,167 0 17,479 0 - - - - - 17,068 806 4 18,196 204,785 4
btrfs - - - - 38,468 1 11,540 791 1 - - - 42,427 1,041 3
xfs - - - - 21,234 0 8,322 525 1 - - - 26,413 990 1
jfs - - - - 8,207 0 4,006 814 0 - - - 9,835 1,396 2
cephfs - - - - 6,621 0 5,493 233 1 - - - 11,660 871 4
xhci - - - - 2,941 0 1,980 357 1 - - - 4,342 1,211 1
vmxnet3 - - - - 1,672 0 1,012 294 2 - - - 2,553 1,474 3
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Fig. 12. Covered code branches in the comparison.

0

600

1200

1800

2400

0

30K

60K

90K

120K

0h 4h 8h 12h 16h 20h 24h

Er
ro

r 
se

q
u

e
n

ce
s 

Time 

ffmpeg 

EH-Fuzz FIFUZZ

0

500

1000

1500

2000

2500

0

50K

100K

150K

200K

250K

0h 4h 8h 12h 16h 20h 24h

Er
ro

r 
se

q
u

e
n

ce
s 

Time 

openssl 

EH-Fuzz FIFUZZ

0

300

600

900

1200

0h 4h 8h 12h 16h 20h 24h

Er
ro

r 
se

q
u

e
n

ce
s 

Time 

xfs 

EH-Fuzz FIZZER

0

200

400

600

800

1000

0h 4h 8h 12h 16h 20h 24h

Er
ro

r 
se

q
u

e
n

ce
s 

Time 

cephfs 

EH-Fuzz FIZZER

Fig. 13. Covered error sequences in the comparison.

As for vim, bison and nasm, EH-Fuzz covers slightly fewer
code branches than AFL++. Indeed, EH-Fuzz performs both
input mutation and error mutation, while AFL++ always
performs input mutation. For the three programs, within
the same testing time, input mutation contributes more in
code coverage than error mutation, though they cover many
different code branches. We select four programs (ffmpeg,
openssl, xfs and cephfs) as examples to study code coverage
in Figure 12. The number of covered code branches increases
quickly during earlier tests, and then tends to be stable in
the later tests; and EH-Fuzz achieves higher code coverage
than the other approaches in the four programs.

Error coverage. Compared to the two SFI-based fuzzing
approaches FIZZER and FIFUZZ, EH-Fuzz has higher error
coverage by covering more error sequences. Indeed, FIZZER
lacks input mutation and performs context-insensitive fault
injection, so it fails to cover error handling code triggered
by specific inputs or executed in different contexts. FIFUZZ
covers more error sequences than FIZZER, by performing
input mutation and context-sensitive fault injection. How-
ever, it guides SFI-based fuzzing according to code cover-
age, which cannot reflect the context information of error
handling code; and it randomly selects error mutation or
input mutation, without knowing whether the coverage is
increased by error mutation or input mutation. Thus, it still
misses much error handling code in many contexts. To solve
the two problems, EH-Fuzz uses error coverage and error-
unrelated code coverage to guide SFI-based fuzzing and

input-driven fuzzing, respectively; and it smartly schedules
error mutation or input mutation, to maximize error cover-
age and code coverage. Thus, EH-Fuzz achieves higher error
coverage and code coverage than FIZZER and FIFUZZ.
We select four programs (ffmpeg, openssl, xfs and cephfs) as
examples to study error coverage in Figure 13. In this figure,
the number of covered error sequences increases along with
testing time, EH-Fuzz achieves higher error coverage than
the other approaches in the four programs.

Found bugs in applications. In the 9 user-level appli-
cations, AFL, AFL++ and FIFUZZ finds 18 unique bugs.
Specifically, AFL++ find 3 input-related bugs missed by AFL
and FIFUZZ, because AFL++ integrates better strategies of
input mutation and seed selection; FIFUZZ finds 13 error
handling bugs missed by AFL and AFL++, because its
fault injection coverages more error handling code; the 2
input-related bugs found by AFL are found by both AFL++
and FIFUZZ. EH-Fuzz finds 31 bugs in the 9 applications,
including the 18 bugs found by these fuzzing approaches,
and 13 bugs missed by them, due to higher testing coverage.

Found bugs in kernel modules. In the 6 kernel-level mod-
ules, Syzkaller and FIZZER find 7 unique bugs. Specifically,
Syzkaller finds one input-related bug missed by FIZZER,
due to input mutation; and FIZZER finds 6 error handling
bugs missed by Syzkaller, due to error mutation. EH-Fuzz
finds 14 bugs in the 6 kernel modules, including the 7 bugs
found by these fuzzing approaches, and 7 bugs missed by
them, due to higher testing coverage.
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TABLE 7
Evaluation results of our ablation study.

Program FIFUZZ FIFUZZalias FIFUZZerr cov
alias FIFUZZmut sch

alias EH-Fuzz
Branch ErrSeq Bug Branch ErrSeq Bug Branch ErrSeq Bug Branch ErrSeq Bug Branch ErrSeq Bug

vim 34,621 1,855 1 66,931 16,710 2 66,862 316,482 4 68,587 15,574 1 60,318 379,636 5
bison 18,107 498 0 20,219 2,501 0 20,086 85,501 0 20,311 2,292 0 20,465 210,157 0
ffmpeg 54,009 789 5 104,621 15,272 9 98,069 68,600 8 105,117 19,624 7 82,250 109,413 13
nasm 10,563 148 0 10,061 812 0 10,379 1,539 0 10,047 805 0 11,454 1,451 0
catdoc 1,257 168 3 1,270 37 4 1,278 507 4 1,273 49 4 1,283 866 5
clamav 18,023 137 2 28,116 10,998 2 28,907 34,802 3 28,127 5,403 2 24,153 41,894 3
cflow 4,350 98 0 4,533 34,481 1 4,532 69,812 1 4,533 34,446 1 4,581 87,824 1
gif2png+libpng 2,200 66 0 3,283 79 0 3,283 90 0 3,283 79 0 3,268 91 0
openssl 17,068 806 4 18,027 98,422 4 18,029 155,538 4 18,027 99,228 4 18,196 204,785 4
Total 160,198 4,565 15 257,061 179,312 22 251,425 732,871 24 259,305 177,500 19 225,968 1,036,117 31

5.6 Sensitivity Analysis

Ablation study on FIFUZZ. EH-Fuzz has two new method-
ology improvements over our previous approach FIFUZZ:
(1) using a new program feedback error coverage to guide
SFI-based fuzzing, and (2) smartly scheduling error muta-
tion and input mutation according to error coverage and
error-unrelated code coverage. Besides, EH-Fuzz has an
implementation improvement of considering the alias rela-
tionship of each function-call return value.

To clearly understand the value of each improvement
made by EH-Fuzz, we perform an ablation study in the
evaluation. In detail, we implement three tools by adding
each improvement in FIFUZZ: (1) FIFUZZalias uses alias
analysis of function-call return values (namely FIFUZZ
+ alias analysis); (2) FIFUZZerr cov

alias uses alias analysis of
function-call return values, and randomly schedules error
mutation and input mutation using error coverage and code
coverage, respectively (namely FIFUZZ + alias analysis +
error coverage), and (3) FIFUZZmut sch

alias uses alias analysis
of function-call return values, and adaptively schedules
error mutation and input mutation using just code coverage
(namely FIFUZZ + alias analysis + mutation scheduling). In
the ablation study, we evaluate these tools on the 9 tested
user-level applications, and compare their evaluation results
with FIFUZZ and EH-Fuzz in Table 7.

Compared to FIFUZZ, the three implemented tools find
more bugs by covering more code branches and error
sequences, reflecting the effectiveness of each improve-
ment made by EH-Fuzz. Specifically, with alias analysis,
FIFUZZalias identifies many realistic error sites missed by
FIFUZZ, and they are used to cover more error handling
code; FIFUZZerr cov

alias uses error coverage as program feed-
back, which can cover complex error handling situations;
FIFUZZmut sch

alias identifies the contribution of error mutation
and input mutation to code coverage, for adaptive muta-
tion scheduling, which is smarter than random mutation
scheduling. Moreover, EH-Fuzz produces the best results
in error coverage and bug detection, indicating that the
combination of these improvements is indeed useful to test
error handling code and find deep bugs.
Effect analysis of mutation scheduling. As described in
Section 3.4, EH-Fuzz switches to error mutation or input
mutation after running N error sequences or program in-
puts. In the above evaluation, we set N as 10% of the exe-
cuted test cases, according to our experience. To understand
the effect of this value, we test it from 10% to 50% with
10% step, and show the results of bug detection for the
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Fig. 14. Variation of found bugs affected by the value of N.

9 user-level applications in Figure 14. We find that this
value has effect on bug detection result, as it decides the
number of error mutation and input mutation; and EH-Fuzz
produces the best result in bug detection, when N is set as
10% of the executed test cases. In fact, each tested program
should have a unique optimal value of N, because different
programs have different error sites and possible program
inputs. In our evaluation, for convenience, we just use the
same criterion of N for all the tested programs.

6 DISCUSSION

6.1 False Positive and Negative Analysis

False positives. EH-Fuzz could report false bugs, if the
selected error sites for fault injection are unrealistic. In the
evaluation, we manually select realistic error sites with the
aid of our static analysis in Section 4.1, so there is no false
positive of bug detection. This static analysis can automati-
cally identify possible error sites from the program code, but
it still has some false positives as shown in Table 3. Indeed,
some functions that return pointers or integers never cause
errors, though their return values are often checked in the
code. The functions strcmp and strstr are examples. To
reduce such cases, a blacklist or a precise dataflow analysis
can be used to drop these functions. In our opinion, to avoid
false positives of bug detection, like our previous FIFUZZ,
the user still needs to manually check the identified possible
error sites and select realistic ones.

Although with realistic error sites, our error mutation
can still produce wrong error sequences, which are actually
impossible in real execution. However, they never cause
false positives of bug detection, as error handling code of
these error sequences are never triggered in real execution.
False negatives. EH-Fuzz can still miss real bugs in error
handling code due to three possible reasons. First, some
error handling code is triggered by erroneous data (such as
bad data read from hardware registers or DMA buffers), but
EH-Fuzz just injects faults into the return values of specific
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function calls, and thus such error handling code is not
covered at present. Second, some error sites are executed
only when specific program inputs and configuration are
provided. In the evaluation, EH-Fuzz cannot provide all
possible program inputs and configuration, and thus some
error sites may not be executed to cover the related error
handling code. Finally, we use ASan and KASan to report
just memory bugs in the evaluation, Other checkers can be
used to detect other kinds of bugs, such as MSan [48] to
detect uninitialized uses, UBSan [55] to detect undefined
behaviors, and TSan [56] to detect data races.

6.2 Exploitability of Error Handling Bugs
To detect bugs in error handling code, EH-Fuzz injects errors
in specific orders according to calling contexts. Thus, to ac-
tually reproduce and exploit a bug found by EH-Fuzz, two
requirements should be satisfied: (1) being able to actually
produce related errors: (2) controlling the occurrence order
and time of related errors.

For the first requirement, different kinds of errors can be
produced in different ways. We have to manually look into
the error-site function to understand its semantics. However,
most of the bugs found in our evaluations are related to
memory-allocation errors. Thus, an intuitive exploitation
way is to exhaustively consume the memory, which has
been used in some approaches [57], [58] to perform attacks.

For the second requirement, as we have the error se-
quence that triggers the bug, we can know when to and
when not to produce the errors. A key challenge here is,
when errors are dependent to each other, we must timely
produce an error in a specific time window, similar to
exploiting use-after-free bugs [59], [60].

6.3 Advice on Avoiding Error Handling Bugs
After studying the root causes of error handling bugs found
by EH-Fuzz, we have some suggestions on how to avoid
such bugs in common programs:

First, the developers should clearly understand which
code operations (especially function calls) can cause errors,
to add necessary security checks and related error handling
of these operations, to avoid missing-check bugs.

Second, the developers should correctly propagate errors
across functions through function return values or reference
parameters to caller functions, to avoid the bugs caused by
missing error handling of ancestor functions, such as the
null-pointer dereference in Figure 11(c).

Finally, the developers should obey several implicit rules
of error handling. For example, our previous study [61] pro-
vides two useful rules: (R1) resource-release order should be
reversed to resource-allocation order; and (R2) when a func-
tion encounters an error, all successfully acquired resources
in this function should be released in the error handling
code of this function, not its caller or callee functions. For
examle in Figure 11(a), if R2 is obeyed in the code, we
believe that the double-free bug could be avoided.

7 RELATED WORK

7.1 Fuzzing
Fuzzing [62] is a useful technique of runtime testing to
detect bugs and discover vulnerabilities. It generates lots of

program inputs in a specific way to cover infrequently exe-
cuted code. A typical fuzzing approach can be generation-
based, mutation-based, or a hybrid of them.

Generation-based fuzzing approaches [12]–[15] generate
inputs according to the specific input formats. Csmith [12]
is a randomized test-case generator to fuzz C-language
compilers. According to C99 standard, Csmith randomly
generates a large number of C programs as inputs for the
tested compiler, and these programs contain complex code
using different kinds of C-language features.

Mutation-based fuzzing approaches [16]–[25] start from
some original seeds, and perform mutation of the selected
seeds, to generate new inputs, without the requirement
of specific formats. To improve code coverage, these ap-
proaches often mutate existing inputs according to the feed-
back of program execution, such as code coverage and bug-
detection results. AFL [16] and AFL++ [17] are two well-
known coverage-guided fuzzing frameworks, which have
been widely-used in industry and research. They use many
effective fuzzing strategies and technical tricks to reduce
runtime overhead and improve fuzzing efficiency.

Some approaches [26]–[29] combine generation-based
and mutation-based fuzzing for efficient bug detection.
AFLSmart [26] uses a high-level structural representation
of the seed file to generate new files. It mutates on the file-
structure level not on the bit level, which can completely
explore new input domains without breaking file validity.

Existing fuzzing approaches focus on generating inputs
to cover infrequently executed code, but they are limited in
covering error handling code triggered by non-input errors.
To solve this problem, EH-Fuzz introduces software fault
injection in fuzzing, and generates injected faults according
to a new feedback error coverage. In this way, EH-Fuzz can
effectively test error handling code and find deep bugs.

7.2 Software Fault Injection

Software fault injection (SFI) is a classical technique of
testing error handling code. SFI intentionally injects faults
or errors into the tested program, and then executes the
program to test whether it can correctly handle the injected
faults or errors during execution.

Existing SFI-based approaches inject single fault [30]–
[32] or multiple faults [33]–[38] in each test case to cover
error handling code. Some of these approaches [33]–[35]
inject faults on random error sites or randomly change
program data, but some studies [63]–[65] have shown that
random fault injection introduces much uncertainty, causing
that the code coverage is low and many detected bugs
are false. To solve this problem, some approaches [36]–[38]
analyze program information to guide fault injection, which
can achieve higher code coverage and detect more bugs.

Existing SFI-based approaches perform only context-
insensitive fault injection, namely they inject faults based on
the locations of error sites in source code, without consid-
ering the execution contexts of these error sites. Thus, these
approaches may miss many error handling bugs that only
occur in specific calling contexts of error sites. Moreover,
these approaches require proper workloads, because they
do not generate the test cases of program inputs.
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7.3 SFI-Based Fuzzing

Several recent fuzzing approaches [39]–[42] introduce soft-
ware fault injection (SFI) and “fuzz” injected faults to trigger
infrequently-executed error handling code. However, these
approaches still have two limitations in testing error han-
dling code. First, these approaches all use code coverage to
guide SFI-based fuzzing, but code coverage cannot reflect
the runtime contexts of the covered error handling code.
Thus, these approaches may miss many interesting test cases
of error mutation, which can trigger real error handling
bugs. Second, these approaches have weak compatibility
with input-driven fuzzing. FIFUZZ [42] is the sole one
that is compatible with input-driven fuzzing. It randomly
selects error mutation or input mutation when new code
branches are covered, without knowing whether these new
code branches are covered exactly due to fault injection or
program inputs. As a result, FIFUZZ may make mistakes
in selecting between error mutation and input mutation for
test case generation, and thus miss many real bugs.

To solve these limitations, EH-Fuzz uses two new tech-
niques. First, EH-Fuzz uses the covered error sequences as
error coverage, to reflect the runtime contexts of the covered
error handling code. Second, EH-Fuzz smartly schedules
SFI-based fuzzing and input-driven fuzzing, according to
error coverage and error-unrelated code coverage. Thanks
to these techniques, EH-Fuzz can achieve higher testing cov-
erage and find more bugs than existing SFI-based fuzzing
approaches, as shown in Section 5.5.

7.4 Static Analysis of Error Handling Code

Static analysis can conveniently analyze the source code
of the target program without actually executing the pro-
gram. Thus, some existing approaches [5], [7], [8], [11], [66]
use static analysis to detect bugs in error handling code.
EDP [7] statically validates the error propagation through
file systems and storage device drivers. It builds a function-
call graph that shows how error codes propagate through
return values and function parameters. By analyzing this
call graph, EDP detects bugs about incorrect operations on
error codes. APEx [66] infers API error specifications from
their usage patterns, based on a key insight that error paths
tend to have fewer code branches and program statements
than regular code.

Due to lacking exact runtime information, static analysis
often reports many false positives. For example, the false
positive rate of EPEx [11] is 22%. However, we believe static
analysis is still useful to SFI-based fuzzing, such as error-site
extraction in EH-Fuzz.

8 CONCLUSION

In this paper, we propose a new fuzzing framework named
EH-Fuzz to effectively test error handling code. EH-Fuzz
introduces software fault injection (SFI) in coverage-guided
fuzzing, with two new techniques. First, EH-Fuzz guides
SFI-based fuzzing using a new feedback named error cov-
erage, which reflects the runtime contexts of the covered
error handling code. Second, EH-Fuzz smartly schedules
SFI-based fuzzing and input-driven fuzzing, according to
error coverage and error-unrelated code coverage. We have

evaluated EH-Fuzz on 9 user-level programs and 6 kernel-
level modules, and in total finds 45 new real bugs. 31 of
these bugs have been confirmed and fixed by the related
developers. We also compare EH-Fuzz to existing fuzzing
approaches, and EH-Fuzz finds many real bugs missed by
these approaches with higher testing coverage. EH-Fuzz is
available on https://sites.google.com/view/eh-fuzz/.

EH-Fuzz can be still improved in some aspects. First,
the static analysis of identifying possible error sites still has
some false positives. We plan to reduce these false positives,
by using a precise dataflow analysis. Second, we plan to im-
prove the fuzzing efficiency using some techniques, such as
snapshot-based [67]–[69] or parallel ways [70]–[72]. Finally,
we implement EH-Fuzz for only C programs at present,
and we plan to apply it to testing the programs of other
programming languages (such as Java and Python).
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[18] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 23rd
International Conference on Computer and Communications Security
(CCS), 2016, pp. 1032–1043.

[19] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“CollAFL: path sensitive fuzzing,” in Proceedings of the 39th IEEE
Symposium on Security and Privacy, 2018, pp. 679–696.

[20] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: application-aware evolutionary fuzzing,” in Proceedings
of the 24th Network and Distributed Systems Security Symposium
(NDSS), 2017, pp. 1–14.

[21] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: a practical con-
colic execution engine tailored for hybrid fuzzing,” in Proceedings
of the 27th USENIX Security Symposium, 2018, pp. 745–761.

[22] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in
Proceedings of the 26th Network and Distributed Systems Security
Symposium (NDSS), 2019.

[23] “Honggfuzz: security oriented fuzzer with powerful analysis op-
tions,” https://github.com/google/honggfuzz.

[24] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code frag-
ments,” in Proceedings of the 21st USENIX Security Symposium, 2012,
pp. 445–458.

[25] C. Lemieux and K. Sen, “FairFuzz: a targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
International Conference on Automated Software Engineering (ASE),
2018, pp. 475–485.
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