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Abstract
Database management systems (DBMSs) are crucial for

storing and fetching data. To improve the reliability of such
systems, approaches have been proposed to detect logic bugs
that cause DBMSs to process data incorrectly. These ap-
proaches manipulate queries and check whether the query
results produced by DBMSs follow the expectations. How-
ever, such query-level manipulation cannot handle complex
query semantics and thus needs to limit the patterns of gener-
ated queries, degrading testing effectiveness.

In this paper, we tackle the problem using a fine-grained
methodology—expression-level manipulation—which em-
powers the proposed approach to be applicable to arbitrary
queries. To find logic bugs in DBMSs, we design a novel
and general approach, equivalent expression transformation
(EET). Our core idea is that manipulating expressions of a
query in a semantic-preserving manner also preserves the
semantics of the entire query and is independent of query
patterns. EET validates DBMSs by checking whether the
transformed queries still produce the same results as the cor-
responding original queries. We realize our approach and
evaluate it on 5 widely used and extensively tested DBMSs:
MySQL, PostgreSQL, SQLite, ClickHouse, and TiDB. In to-
tal, EET found 66 unique bugs, 35 of which are logic bugs.
We expect the generality and effectiveness of EET to inspire
follow-up research and benefit the reliability of many DBMSs.

1 Introduction

Database management systems (DBMSs) are critical systems
software and play important roles in modern data-driven ap-
plications and provide essential functionalities such as data
storage and fetching [8, 12, 39]. Like other large-scale sys-
tems, DBMSs involve complicated code logic and various
functionalities, and thus bugs are easily introduced during
their development and maintenance [1, 13, 15]. One of the
most critical kinds of bugs is logic bugs—the bugs silently
cause DBMSs to produce incorrect query results [25–27]. To

detect logic bugs, existing approaches generate SQL queries
to test DBMSs and check whether the produced results fol-
low the expectations [11, 25–27, 29, 35]. To do so, they either
construct customized queries and validate the rows fetched by
these queries [27], or transform the given queries and check
whether the execution results of the transformed queries are
consistent with the original ones [11, 25, 26, 29, 35].

However, all existing approaches have limited generality as
they require the generated queries to follow specific patterns.
Their generated queries cannot support SQL features that vio-
late their designed query patterns, as shown in Figure 1. For
example, PQS [27] requires that the results of the generated
queries can be predicted by its manually implemented inter-
preter, and thus it is difficult for PQS to support advanced
SQL features involving complicated calculations (e.g., win-
dow functions). TLP [26] requires that the queries must con-
tain predicates in WHERE or HAVING clauses for partitioning,
while bug-triggering queries may not contain such clauses. In
addition, TLP does not support advanced features like window
functions and subqueries. DQE [29] limits its queries to only
use common SQL features supported by SELECT, UPDATE,
and DELETE statements, while any features (e.g., JOIN oper-
ations and aggregate functions) supported by only one kind
of statements are absent. Table 1 provides detailed informa-
tion on whether existing approaches support specific SQL
features. Except for our approach, none of the existing ones
can encompass all the listed SQL features. Due to their lim-
ited support of general SQL queries, existing approaches miss
many logic bugs (e.g., the logic bug triggered by the query
shown in Figure 2, which incorporate correlated subqueries
and join operations).

The lack of generality in existing approaches is caused by
the inherent limitations of their coarse-grained methodology,
namely query-level manipulation. To construct customized
queries or transform existing ones to other related queries,
these approaches need to understand the semantics of the ma-
nipulated queries to guarantee the results produced by these
queries follow their expectations. However, SQL queries are
designed to be flexible [34], and can contain abundant and
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Figure 1: Limitations of existing approaches.

Table 1: Supported SQL features of existing approaches

Approach Subquery Join Window Group DML

PQS
NoREC
TLP
TQS
Pinolo
DQE
EET

Window: window functions; Group: GROUP BY clauses; DML: data
manipulation language (e.g., UPDATE statements); : TQS [35] and
Pinolo [11] support simple but not correlated subqueries. PQS [27]
and Pinolo support only parts of join operations.

complex semantics [13, 14, 16, 28, 37] supported by DBMSs.
Existing approaches cannot be applied to complex queries
because it is difficult to fully understand the complicated
semantics contained by such queries (e.g., the queries in Fig-
ure 2). Due to these challenges, existing approaches have to
limit the patterns of their generated queries to constrain the
query semantics. Therefore, these approaches cannot utilize
general queries that fall outside their expected query patterns.

To address the inherent limitations of existing approaches,
we propose to approach the logic-bug-detection problem us-
ing a new and fine-grained methodology—expression-level
manipulation. Expressions are the essential units of SQL
queries. They can be functions, operations, column variables,
constant values, or subqueries, etc. By manipulating expres-
sions, we can focus on the fine-grained semantics of queries,
i.e., expression semantics, and correspondingly manipulate
queries without the need to understand their overall query-
level semantics. For example, we can easily construct a new
query for oracle checking by manipulating the expressions t2
.c2 and t2.c3 of the original query in Figure 2, even though
the query is complex. In this way, we do not need to limit
query patterns to ones with simple semantics.

Based on this fine-grained methodology, we propose a
novel and general approach, equivalent expression transfor-
mation (EET), which applies to arbitrary queries and can
effectively find logic bugs in DBMSs. Given an arbitrary
query, EET traverses its abstract syntax tree (AST) to iterate

--- Statements for database generation
CREATE TABLE t0 (c0 TEXT);
CREATE TABLE t1 (c0 TEXT);
CREATE TABLE t2 (c0 INT4, c1 INT4, c2 TEXT,

c3 TEXT, c4 TEXT, c5 TEXT);
INSERT INTO t0 values ('');
INSERT INTO t1 values ('');
INSERT INTO t2 values (1, 2, 'a', 'a', 'a', 'a'),

(0, 1, '', '', 'a', 'L');

--- Original query , result set: 0

SELECT t2.c0 FROM t2
WHERE (t2.c1 >= t2.c0) <> (t2.c5 = (

SELECT t2.c4 AS c_0
FROM (t1 AS ref_0 INNER JOIN t0 AS ref_1

ON (ref_0.c0 = ref_1.c0))
WHERE t2.c3 = t2.c2
ORDER BY c_0 DESC LIMIT 1));

--- Transformed query , result set: empty

SELECT t2.c0 FROM t2
WHERE (t2.c1 >= t2.c0) <> (t2.c5 = (

SELECT t2.c4 AS c_0
FROM (t1 AS ref_0 INNER JOIN t0 AS ref_1

ON (ref_0.c0 = ref_1.c0))
WHERE (CASE WHEN (((ref_0.c0 LIKE 'z~%')

AND (NOT (ref_0.c0 LIKE 'z~%')))
AND ((ref_0.c0 LIKE 'z~%') IS NOT NULL))

THEN t2.c3 ELSE t2.c3 END) =
(CASE WHEN (((ref_1.c0 NOT LIKE '_%%')

AND (NOT (ref_1.c0 NOT LIKE '_%%')))
AND ((ref_1.c0 NOT LIKE '_%%') IS NOT NULL))

THEN t2.c4 ELSE t2.c2 END)
ORDER BY c_0 DESC LIMIT 1));

Figure 2: Queries exposing an ancient logic bug (20 years
old) in PostgreSQL.

over the expressions used in this query. For each expression,
EET transforms it to another semantically equivalent one
based on logical equivalences [5, 19] and SQL branch struc-
tures [34]. In the end, EET compares the execution results of
the transformed query (i.e., the query whose expressions have
been transformed) and the original query, and any observed
discrepancy indicates a logic bug. For example, EET trans-
forms expressions t2.c2 and t2.c3 of the original query
in Figure 2 into two semantically equivalent CASE WHEN ex-
pressions of the transformed query, and validate the tested
DBMS by checking whether the results of these two queries
are identical. The key intuition of what makes this approach
effective is that the transformed expressions can lead DBMSs
to exercise different code logic for the manipulated queries.
Such different query executions cross-check each other as
they are expected to produce the same results.

We implemented our approach as a practical DBMS testing
tool and evaluate it on 5 widely-used and extensively-tested
DBMSs, MySQL [20], SQLite [32], PostgreSQL [24], Click-
House [3], and TiDB [36]. In total, EET found 66 unique bugs,
including 16 in MySQL, 10 in SQLite, 9 in PostgreSQL, 21



in ClickHouse, and 10 in TiDB. Among these bugs, 65 are
confirmed and 37 are fixed. 35 bugs are logic bugs, and many
are long latent. These results demonstrate the effectiveness of
EET in finding logic bugs in DBMSs.

Overall, we make the following contributions:

• We propose a fine-grained methodology, expression-level
manipulation, which can operate on arbitrary queries with-
out limiting query patterns.

• We propose a novel and general approach, equivalent ex-
pression transformation (EET), which can effectively find
logic bugs in DBMSs using transformation rules based on
logical equivalences and SQL branch structures.

• We implement the approach as an automatic DBMS testing
tool and evaluate it on 5 widely used DBMSs. In total,
we found 66 bugs, 35 of which are logic bugs. To further
facilitate research on DBMS testing, we open-source the
tool at https://github.com/JZuming/EET.

2 Motivation

In this section, we illustrate queries that trigger an ancient
logic bug, analyze the limitations of existing approaches, and
present our solution based on a fine-grained methodology.

2.1 Illustrative Example

Figure 2 shows the queries that trigger a very ancient logic
bug caused by incorrect hash-join mechanisms. The bug ex-
isted for 20 years in PostgreSQL until EET found it. The
bug-triggering queries consist of three parts. The first part
contains several statements (e.g., CREATE and INSERT) for
setting up a database for later querying. The second part is
a randomly generated query, termed as original query, and
the third part is the query transformed from the original query
by our approach, term as transformed query. The expres-
sions t2.c3 and t2.c2 in the original query are transformed
into two semantically equivalent CASE WHEN expressions in
the transformed query. The transformed query preserves the
semantics of the original query, and thus these two queries
should produce the same results. However, their results dif-
fered, indicating a logic bug had been triggered.

The bug-triggering queries have been minimized but are
still very complex. Specifically, the transformed query con-
tains a subquery in its WHERE clause. The subquery is a corre-
lated subquery that references value (i.e., the columns of table
t2) from the outer query. The subquery uses INNER JOIN
tables in its FROM clause and uses ORDER BY and LIMIT to
constrain its returned value. PostgreSQL is expected to return
a row {0} for the transformed query. However, it returns an
empty set because the predicate inside the subquery triggers a
logic bug. The detailed root cause is discussed in Section 5.3.

2.2 Limitations of Existing Approaches

Several approaches have been proposed to detect logic bugs in
DBMSs [11, 25–27, 29, 35]. PQS [27] synthesizes a query in
a way that the query is expected to fetch a specific row. If the
row is not fetched, a logic bug is triggered. TLP [26] partitions
a given query into three separated queries by decomposing
the predicate in the WHERE or HAVING clause. The union of
the results of these three queries should be consistent with the
original one, otherwise, a logic bug is found. Pinolo [11] ma-
nipulates the query predicate in its WHERE clause to construct
a new query whose results are the superset or subset of the
results of the original query.

All these approaches are trapped in query-level manipu-
lation, which is a coarse-grained methodology for logic-bug
detection in DBMSs. To guarantee the correct manipulation,
this methodology inherently requires the approaches to under-
stand the semantics of the manipulated queries. For example,
PQS needs to interpret its synthesized queries to predict their
expected results. However, SQL is a flexible query language,
providing various features (e.g., subquery, join) to manipulate
data [34]. Under specific demands, SQL queries (e.g., analyti-
cal queries) can be very complex [16, 28, 37]. In these cases,
query-level manipulation cannot work effectively because it
cannot handle the complicated semantics of these queries.

For the example query in Figure 2, PQS cannot infer its ex-
pected fetched row because it cannot predict the results of the
complex predicates involving correlated subquery with join ta-
bles. TLP cannot partition the predicates inside the subqueries,
because predicate effects propagating from subqueries to the
outer query are implicit and complicated. Partitioning predi-
cates in subqueries cannot guarantee the consistency between
the results of its unioned queries and its original query. Simi-
larly, Pinolo cannot guarantee the superset or subset relation-
ships between the manipulated queries because the logical
effects inside the subqueries are difficult to predict.

To avoid such inapplicable cases from happening in their
generated queries, existing approaches limit the query pat-
terns to constrain the semantics of their generated query. As a
result, many important SQL features cannot be supported by
existing approaches, as shown in Table 1. For example, PQS
and Pinolo support only parts of join operations, and none
of the existing approaches supports correlated subqueries,
because their semantics are complex. Therefore, these ap-
proaches miss many logic bugs that are not covered by their
limited query patterns, such as the 20-year-old logic bug of
PostgreSQL in Figure 2.

2.3 Our Solution

To propose a general approach that is applicable to arbitrary
queries, we need to tackle the logic-bug-detection problem
using a new methodology instead of query-level manipula-
tion. In this paper, we propose a fine-grained methodology—

https://github.com/JZuming/EET


expression-level manipulation, which shifts our focus from
the semantics of a whole query to the semantics of a single ex-
pression of the query, empowering the potential and flexibility
of manipulation. We can manipulate queries by processing
their fine-grained elements, expressions, without the necessity
to analyze the semantics of the whole query, and thus do not
need to limit the query patterns to simplify query semantics.

Based on this methodology, we propose equivalent expres-
sion transformation (EET), which is applicable to arbitrary
queries to find logic bugs in DBMSs. Given a SQL query,
EET iterates all expressions of the query and transforms them
into semantically equivalent expressions. EET validates the
DBMSs by checking whether the query with transformed ex-
pressions produces the same results as the original query. In
this paper, we use logical equivalences [5,19] and SQL branch
structures [34] to perform semantic-preserving transforma-
tion. For example, in Figure 2, EET transform the expressions
t2.c3 and t2.c2 in the original query to two CASE WHEN
expressions in the transformed query. CASE WHEN expres-
sions are SQL-style conditional branch structures. Depend-
ing on the results of the conditional expressions following
WHEN keywords, the returned values of the CASE WHEN ex-
pressions are determined by the expression following either
the THEN keywords (i.e., TRUE branches) or ELSE keywords
(i.e., FALSE branches). Both the branch conditions of the two
CASE WHEN are unsatisfiable and can only be evaluated to
FALSE. Therefore, these two CASE WHEN are semantically
equivalent to t2.c3 and t2.c2, respectively, which are the
expressions used in the original query. Therefore, the original
query and the transformed query should produce the same
results. However, the original query outputs 1 row {0}, while
the transformed query outputs empty, exposing a logic bug.

EET is effective because the transformed expression can
result in different execution logic of the tested DBMSs. For
the example in Figure 2, the transformed expressions (i.e.,
the two CASE WHEN) lead the PostgreSQL server to invoke
its buggy hash-join mechanism, while the original one does
not. Such execution differences make PostgreSQL produce
different results for the two queries and indicate at least one
of the queries triggers bugs.

3 Equivalent Expression Transformation

In this section, we present the formalization and overview
of EET, the two kinds of expression transformations that we
propose in this paper, and the properties of this approach.

3.1 Overview

We formalize the core idea of equivalent expression transfor-
mation (EET) as the following formula, where Q represents
an arbitrary query, E represents expressions contained in Q,

SQL Query

AST Traversing Expression Transformation
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Transformed SQL Query

Expression

Transformed Expression

Results Comparison
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Figure 3: Approach overview of EET.

and DB(Q) is the result the tested DBMS produces for Q:

E ≡ E ′ ⇒ DB(Q)≡ DB(Q′),where Q′ = QJE ′/EK (1)

The idea is simple: given an arbitrary query Q with expres-
sions E, construct a query Q′ = QJE ′/EK by replacing all oc-
currences of E in Q with semantically equivalent expressions
E ′. Q′ and Q are semantically equivalent by construction, and
a DBMS should produce identical results on them.

Figure 3 shows the overview of EET. EET traverses the
AST presentation of the query to iterate over expressions
and transforms these expressions into semantically equivalent
ones. After all the expressions have been transformed, the
EET constructs a semantically equivalent query and validates
the tested DBMS by comparing the results of the transformed
query and the original query. In this paper, we propose de-
termined boolean expressions (Section 3.2.1) and redundant
branch structures (Section 3.2.2) to instantiate the expression
transformations that satisfy E ≡ E ′ in Eq. 1.

3.2 Expression Transformation
SQL queries contain various expressions, whose types can be
categorized into two classes: boolean expressions and non-
boolean expressions. For boolean expressions, we can trans-
form them leveraging the logical equivalences [5,19] in math-
ematical logic, which have been well studied and generally
recognized. For non-boolean expressions, it is difficult to pro-
pose general transformation, because these SQL expressions
can be numeric (e.g., integer, floating point), string, or times-
tamp, etc. Their execution rules are different. To generally
support these types, we leverage SQL branch structures [34],
which operate on expressions of various types and provide
flexibility for transformation.

To this end, we propose two kinds of expression transforma-
tion, determined boolean expressions and redundant branch



structures. Table 2 shows the details of each transformation,
including its applied expressions and transformation rules.
EET is extensible for additional expression transformations,
and we expect that more kinds of effective transformation can
be proposed in the future, as discussed in Section 3.3.

3.2.1 Determined Boolean Expressions

For each boolean expression, we can transform it using logical
operations, such as AND and OR. We leverage 5 laws of logical
equivalences [5, 19] for an arbitrary boolean expression p:

⊤∨ p ≡⊤

⊥∧ p ≡⊥

⊤∧ p ≡ p

⊥∨ p ≡ p

p∨q ≡ q∨ p, p∧q ≡ q∧ p

We interpret them to corresponding SQL equations:

TRUE OR p ≡ TRUE (2)

FALSE AND p ≡ FALSE (3)

TRUE AND p ≡ p (4)

FALSE OR p ≡ p (5)

p OR q ≡ q OR p, p AND q ≡ q AND p (6)

As the values of SQL boolean expressions can only be
either TRUE, FALSE, or NULL [26], one of the expressions, p,
NOT p, and p IS NULL must be TRUE, where p is an arbitrary
boolean expression. Therefore, p OR (NOT p )OR ( p IS
NULL) must be TRUE according to Eq. 2. Similarly, one of the
expressions, p, NOT p, and p IS NOT NULL must be FALSE,
so p AND (NOT p )AND ( p IS NOT NULL) must be FALSE
according to Eq. 3. The equations are shown below:

p OR (NOT p) OR (p IS NULL)≡ TRUE (7)

p AND (NOT p) AND (p IS NOT NULL)≡ FALSE (8)

We use true_expr and false_expr to represent the expres-
sions on the left-hand side of Eq. 7 and Eq. 8:

true_expr(p) = p OR (NOT p) OR (p IS NULL) (9)

false_expr(p) = p AND (NOT p) AND (p IS NOT NULL) (10)

Note that the operands of OR/AND can be randomly disor-
dered according to Eq. 6 (e.g., p and NOT p can switch their
positions). Combining Eq. 4 with Eq. 7 and 9, Eq. 5 with
Eq. 8 and 10, respectively, we get the following equations,
where p and p′ can be arbitrary boolean expressions:

true_expr(p′) AND p ≡ p (11)

false_expr(p′) OR p ≡ p (12)

Based on Eq. 11 and Eq. 12, we can transform an arbi-
trary boolean expression p by adding a structured expression
containing a randomly generated boolean expression p′. We
accordingly propose two transformation rules shown in rows
No.1 and 2 in Table 2. Both of these transformation rules are
guaranteed to preserve the semantics of original expressions.
The queries shown in Figure 6 and Figure 7 (discussed in
Section 5.3) are transformed by these rules.

3.2.2 Redundant Branch Structures

To transform non-boolean expressions, we propose to leverage
CASE WHEN expressions, which are SQL-style conditional
branch structures and support various SQL types. These ex-
pressions execute the following if-else logic:

C(p,expr1,expr2) = CASE WHEN p THEN expr1

ELSE expr2 END

C(p,expr1,expr2) =

{
expr1 if p is TRUE
expr2 if p is FALSE or NULL

(13)

We can determine the execution logic of CASE WHEN ex-
pressions by fixing the predicate p to be TRUE or FALSE.
Furthermore, we can use Eq. 9 and Eq. 10 to replace the TRUE
and FALSE values, making the transformed expression more
complex. In the end, we get the following equations:

C(true_expr(p),expr,expr′)≡ expr (14)

C(false_expr(p),expr′,expr)≡ expr (15)

Based on Eq. 14 and Eq. 15, we can transform an expres-
sion to a designed CASE WHEN expression, which involves
randomly generated expressions p and expr′ but still preserves
the semantics of the original expression expr. We accordingly
propose 2 transformation rules shown in rows No.3 and 4
of Table 2. Note that the type of expr′ should be the same
as the type of expr, otherwise ambiguous behaviors may be
triggered in some DBMSs [20, 24, 32]. The query shown in
Figure 2 is transformed by these rules.

Besides fixing the predicate p to be TRUE or FALSE to de-
termine the return value of a CASE WHEN expression, we can
also manipulate the expression in TRUE or FALSE branch. If
the expressions in the TRUE and FALSE branch are semanti-
cally equivalent to each other, the CASE WHEN expression is
determined to be the expression in the TRUE/FALSE branch,
no matter how the predicate p is evaluated. Formally, we get
the following equation by making expr1 ≡ expr2 in Eq. 13:

expr1 ≡ expr2 ⇒C(p,expr1,expr2)≡ expr1 ≡ expr2 (16)

Based on Eq. 16, we propose 2 transformation rules shown
in rows No.5 and 6 of Table 2. In these rules, we deeply copy



Table 2: Transformation rules of EET

No. Expression Transformation Applied Expression Transformation Rule

1 Determined Boolean Expressions bool_expr: boolean bool_expr → false_expr3OR bool_expr
2 Determined Boolean Expressions bool_expr: boolean bool_expr → true_expr4AND bool_expr
3 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN false_expr

THEN rand_expr(type(expr))1, 2

ELSE expr END
4 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN true_expr

THEN expr
ELSE rand_expr(type(expr)) END

5 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN rand_expr(boolean)
THEN copy_expr(expr)5

ELSE expr END
6 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN rand_expr(boolean)

THEN expr
ELSE copy_expr(expr) END

7 Origin expr: non boolean expr → expr
CASE-WHEN inapplicable

1 type(e): the type of the return value of expression e.
2 rand_expr(t): randomly generated expression that returns a value with type t.
3 false_expr → p AND (NOT p )AND ( p IS NOT NULL) | p → rand_expr(boolean)
4 true_expr → p OR (NOT p )OR ( p IS NULL) | p → rand_expr(boolean)
5 copy_expr(e): an expression deeply copied from expression e

the original expression expr (i.e., the expression itself and
its subexpressions) to another expression, namely copy_expr.
The expressions expr and copy_expr are semantically equiv-
alent because they are the same. We distribute these expres-
sions in TRUE and FALSE branches of a CASE WHEN expres-
sion, and randomly generate a predicate. Eq. 16 guarantees
that such a CASE WHEN expression is semantically equiva-
lent to the original expression. The query shown in Figure 8
(discussed in Section 5.3) is transformed by these rules.

3.2.3 Choosing Transformation Rules

CASE WHEN expressions can be applied for the majority types
of SQL expressions, including numeric types, string types,
timestamp types, e.t.c. EET randomly chooses one of the
rules No.3 to 6 to transform the expression belonging to these
types. Boolean types also support CASE WHEN, so EET ran-
domly applies one of the rules No.1 to 6 for each boolean
expression. However, some types of expressions are CASE-
WHEN inapplicable, and thus none of the rules No.1 to 6 are
available. The table expressions t0 and t1 in Figure 2 are the
examples. When we replace them with CASE WHEN expres-
sion, the query will trigger syntactic errors. To address this
problem, EET conservatively transforms these expressions to
themselves, as shown in rule No.7 of Table 2.

3.3 Properties

Soundness. EET follows the formally-proved equations in
Section 3.2, and thus is guaranteed to preserve the semantics
of the original queries. If the execution results of the original
queries are determined (i.e., excluding SQL features involving
randomness), the transformed queries must produce the same
execution results as the original ones, otherwise logic bugs
are triggered. Therefore, EET is sound and produces no false
positives in logic-bug detection.

Generality. EET can be generally applied to various SQL
queries because it works at the expression level instead of the
query level. Existing approaches, which work at the query
level, inherently require the generated queries to follow speci-
fied query patterns. Otherwise, these approaches cannot infer
the oracle results to validate the execution of their generated
queries. Such limitations make existing approaches not gen-
eral because they cannot be applied to arbitrary queries (e.g.,
the queries violated their patterns). In contrast, EET can be
applied to validate arbitrary queries because it works at the ex-
pression level. Given an arbitrary query that is not limited to
any query patterns, EET can generally transform it by trans-
forming its expressions, and use the results of the transformed
query to validate the results of the given query. In this sense,
EET is general in validating arbitrary SQL queries.

While the high-level idea of EET works generally, its im-
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plementation for different SQL dialects can vary, depending
on their branching structure syntax. For example, the function
DECODE in Oracle [21] can return different values accord-
ing to the comparison of its operands. This function can be
implemented in the redundant branch structures of EET to
transform queries written in Oracle-style SQL. In this pa-
per, for redundant branch structures, we use only CASE WHEN
expressions, which are supported by all the tested DBMSs.
Extensibility. In this paper, we propose two kinds of expres-
sion transformations for finding logic bugs to demonstrate the
effectiveness of EET. Besides these two, we expect that more
transformations are possible to enhance the approach. For
example, a new transformation can be proposed to process
table expressions (e.g., t0 and t1 in Figure 2) by joining the
original table with other tables while keeping the join results
the same as the original one. EET can be easily extended to
support new transformations as we only need to specify the
transformation rules and the applied expression types. In our
implementation, we used less than 200 lines of code for the
proposed two kinds of expression transformations.
Black-Box Testing. EET is a pure black-box technique,
which does not rely on the internal implementation of the
tested DBMSs. Such a property makes our approach portable
and can be easily deployed for testing various DBMSs, even
the ones whose source code is unavailable.

4 Implementation

We implemented EET into a fully automatic tool on top of
SQLsmith [33], which we mainly use for generating databases
and complex queries. The overall codebase of the tool is 14k
lines of C/C++ code, 2k of which is used to implement our
approach. Figure 4 shows its architecture. The following
describes the important implementation details.
Test-Case Generation. EET generates databases and queries
randomly. To generate a query, the tool incrementally builds

Transformed
query

Original
query

Stage 1

Original
query

Transformed
query

Transformed
query Stage 2

Reduced test case

Figure 5: Two-stage reduction of EET.

an AST tree according to the grammar of SQL [27, 34, 38].
When constructing a node of the AST, EET updates and
records the available variables (e.g., relations, columns), and
fills the node with a randomly generated expression referenc-
ing the available variables. After the AST tree is completed, a
new query is generated and can be fed to the tested DBMS.

Expression Transformation. EET leverages the AST rep-
resentation of the query to iterate each expression. For each
expression, EET checks its type and randomly chooses one of
the suitable transformation rules, as discussed in Section 3.2.3.
During transformation, EET may need to generate additional
expressions (e.g., an additional boolean expression is required
in rules No.1 to 6 in Table 2). In this case, EET reuses the
information (e.g., available variables in corresponding AST
nodes) used in test-case generation to randomly generate ad-
ditional expressions with specific types.

Result Comparison. EET compares the execution results of
the transformed query and the original query, including their
query output and database changes caused by these queries.
Any discrepancy indicates that logic bugs are triggered.

Test-case Reduction. To trigger a logic bug, EET may per-
form transformations on a large query (e.g., hundreds of lines
of SQL), and all its expressions are transformed. However,
the same bug might be triggered using parts of the large query
and couples of transformed expressions. To ease the burden
of developers, we need to reduce the bug-triggering queries
before reporting the bugs. We customize two-stage reduction
for EET to reduce the bug-triggering queries automatically.
Figure 5 shows the workflow of this reduction procedure.

In the first stage, EET reduces both the original query and
the transformed query. Each time the parts (e.g., an expres-
sion) of an original query are reduced, the corresponding parts
(e.g., the transformed expression) in the transformed query
are also reduced to make these two queries consistent. For ex-
ample, in Figure 2, when the expression t2.c3 of the original
query is reduced to a constant value NULL, the corresponding
CASE WHEN expression in the transformed query should also
be replaced by NULL. EET checks whether these two queries
still produce different results. If so, the bug still exists and
the reduction is effective. Otherwise, EET recovers the re-
duced parts and tries to reduce other parts of these two queries.
When no part can be reduced, EET enters the second stage.

In the second stage, EET tries to incrementally disable the



transformation for each expression in the transformed queries.
After one transformation for an expression is disabled, if the
execution results of the transformed queries are still different
from the original, EET keeps this expression not transformed.
Otherwise, EET recovers the expression to the transformed
version. When no transformation can be disabled in the trans-
formed query, this stage ends.

5 Evaluation

Our evaluation aims to answer the following questions to
demonstrate the effectiveness of EET:
Q1 Can EET find real logic bugs in widely used and exten-

sively tested DBMSs? (Section 5.2)
Q2 How diverse are the logic bugs found by EET? (Sec-

tion 5.3)
Q3 Can EET find logic bugs that are missed by existing

approaches? (Section 5.4)

5.1 Experimental Setup

We focused on testing open-source DBMSs for transparent
and convenient bug reporting. We chose MySQL [20], Post-
greSQL [24], SQLite [32], ClickHouse [3], and TiDB [36]
because they are popular and extensively tested. At the time
of paper writing, MySQL, PostgreSQL, and SQLite rank 1st,
2nd, and 6th, respectively, among the open-source DBMSs
according to their popularity in DB-Engines Ranking [6].
ClickHouse and TiDB are relatively new DBMSs but very
popular on GitHub [10]. They have gained over 31K and
35K stars, respectively, demonstrating their popularity. All
of these DBMSs have been extensively tested by existing ap-
proaches for finding logic bugs [4,11,25–27,29,35] and crash
bugs [13, 33, 38]. Finding new bugs in these DBMSs is very
challenging and can demonstrate the effectiveness of EET.

We use EET to test the latest version of each DBMS. When
the code of a DBMS is updated, we start a new test for the
updated version. Specifically, we started to test MySQL from
version 8.0.34, PostgreSQL from commit 3f1aaaa, SQLite
from commit 20e09ba, ClickHouse from commit 30464b9,
and TiDB from commit f5ca27e. All the DBMS code is
cloned from their official GitHub repositories. We intermit-
tently deployed EET to test these DBMSs. We stopped and
restarted the testing when we implemented new features in
EET. The overall testing duration is three months. We evalu-
ate EET on Ubuntu 20.04 with a 64-core AMD Epyc 7742
CPU at 2.25G Hz and 256GB RAM.

5.2 Bug Detection

As shown in Table 3, we reported 66 unique DBMS bugs
found by EET, including 16 in MySQL, 9 in PostgreSQL, 10
in SQLite, 21 in ClickHouse, and 10 in TiDB. 65 of these

Table 3: Status of the bugs found by EET

DBMS Reported Confirmed Fixed

MySQL 16 16 2
PostgreSQL 9 9 8
SQLite 10 10 10
ClickHouse 21 20 15
TiDB 10 10 2

Total 66 65 37

Table 4: Bug classification

DBMS Logic Crash Error

MySQL 10 6 0
PostgreSQL 3 3 3
SQLite 9 0 1
ClickHouse 11 3 7
TiDB 2 7 1

Total 35 19 12

bugs have been confirmed, and 37 have been fixed. None of
these bugs are marked as duplicates by developers.
Bug Classification. We classify the bugs EET found into the
three following types:

Logic bugs. The tested DBMSs incorrectly execute the SQL
queries and produce wrong results (e.g., select or update incor-
rect rows). These bugs were exposed because they incurred
discrepancies between the results of the original queries and
the transformed queries generated by EET.

Crash bugs. These bugs cause the tested DBMSs to crash or
panic when specific queries are processed. Their root causes
may be (1) memory corruption like null-pointer dereference;
(2) assertion failures and (3) unexpected memory exhaustion.

Abnormal errors. The tested DBMSs report unexpected
errors (e.g., "database disk image is malformed" in SQLite)
when processing syntactically and semantically valid queries.

As shown in Table 4, 35 bugs (52% of the bugs EET found)
are logic bugs, which are the most interesting and hard-to-
find bugs. The three logic bugs in PostgreSQL are exciting
because PostgreSQL is a well-known hard nut for DBMS
testing [13, 25, 27], where SQLancer [30], the DBMS testing
tool integrating three logic bug detection techniques [25–27],
found only one logic bug [31]. EET also found 19 crash bugs
and 11 abnormal errors. These results demonstrate that EET
is effective in finding bugs in DBMSs, especially logic bugs.
Bug Importance. We collect the severity information of the
bugs we reported to MySQL and TiDB. PostgreSQL, SQLite,
and ClickHouse do not provide the severity of each reported
bug. All the crash bugs we reported to MySQL were identified
as confidential, among which 2 have been assigned CVEs.



Among the 10 logic bugs in MySQL, 7 were recognized as
serious bugs, and 3 were non-critical. Among the 10 bugs
reported to TiDB, developers marked 6 as major, 1 as minor,
and 3 as moderate.

The developers appreciated our effort in finding real bugs
in their DBMSs. Particularly, PostgreSQL developers recog-
nized our contribution to the reliability of PostgreSQL and
sent us their commemorative coin [23]. ClickHouse and Post-
greSQL developers provided their testimonials:

ClickHouse: This tool has proven its value, and we want
to integrate it into our CI and use it continuously. Thanks
to @xxx for running it and reporting the findings!

PostgreSQL: Thanks for your efforts! I thought about the
generation of self-join tests for about a year, and it would
be interesting to read about your approach. Could you
send me a copy of the paper after release? Or the name of
the conference to participate and see it offline.

Throughput. We count the number of tests (each one consists
of one original query and one transformed query) performed
by EET per second during testing the 5 DBMSs. On average,
a single EET instance performs 3.39 tests per second (293k
tests per day), which is lower than existing approaches. It
is reasonable because EET supports complex queries, and
DBMSs spend much more time executing complex queries
than simple queries [13], making most CPU time spent on
query execution (94.18% in our statistic results). We believe
this throughput is practical considering (1) DBMS testing
typically persists for several months [25–27, 29], and thus a
sufficient number of tests can be executed and (2) setting up
multiple testing instances can significantly improve the test
efficiency of EET.

5.3 Bug Diversity

For the 35 logic bugs, we investigate their diversity from three
aspects: (1) the diversity of bug-triggering queries involving
multiple SQL features, (2) the diversity of the root causes of
why DBMS produces incorrect results, and (3) the diversity
of bug manifestation during testing DBMSs.

SQL Features. Table 5 lists the SQL features used in the 35
queries triggering logic bugs. The columns Subquery, Join,
Window, and Group show whether the queries contain sub-
queries, join operations, window functions, and GROUP BY
clauses, respectively. The column DML shows whether the
bug-triggering queries are DML statements (e.g., UPDATE and
DELETE) instead of DQL (e.g., SELECT).

Among the 35 bug-triggering queries, 18 contain sub-
queries (8 of them involve correlated subqueries), 18 use
join operations (e.g., inner join, outer join, and cross join), 4

Table 5: SQL features of the 35 queries triggering logic bugs

ID DBMS Subquery Join Window Group DML

1 MySQL
2 MySQL
3 MySQL
4 MySQL
5 MySQL
6 MySQL
7 MySQL
8 MySQL
9 MySQL

10 MySQL
11 PostgreSQL
12 PostgreSQL
13 PostgreSQL
14 SQLite
15 SQLite
16 SQLite
17 SQLite
18 SQLite
19 SQLite
20 SQLite
21 SQLite
22 SQLite
23 ClickHouse
24 ClickHouse
25 ClickHouse
26 ClickHouse
27 ClickHouse
28 ClickHouse
29 ClickHouse
30 ClickHouse
31 ClickHouse
32 ClickHouse
33 ClickHouse
34 TiDB
35 TiDB

invoke window functions (e.g., DENSE_RANK, FIRST_VALUE
), 3 involve GROUP BY clauses, and 2 are DML statements.
We investigated the 10 bugs not involving these 5 features
and found that all of them used SQL functions (e.g., ACOS,
HEX, and UNIX_TIMESTAMP) to perform complicated value
calculations, string manipulation, and timestamp controlling.
These results indicate that EET can find logic bugs triggered
by various SQL queries.

The combined results in Table 1 and Table 5 demonstrate
that EET can find many logic bugs missed by existing ap-
proaches because EET can support more various SQL fea-
tures. For example, PQS [27], TLP [26], and NoREC [25]
cannot find the 18 logic bugs related to subqueries, which are
not supported by these approaches. Lacking support for join
operations, DQE [29] cannot find the 18 join-related logic



--- Statements for database generation
CREATE TABLE t0 (c0 INT , c1 INT, c2 INT);
INSERT INTO t0 VALUES(2,1,-20);
INSERT INTO t0 VALUES(2,2,NULL);
INSERT INTO t0 VALUES(2,3,0);
INSERT INTO t0 VALUES(8,4,95);

--- Original query , delete 4 rows

DELETE FROM t0 WHERE TRUE;

--- Transformed query , delete 3 rows

DELETE FROM t0 WHERE
((((t0.c0 <= t0.c2) AND

(t0.c0 <> (SELECT c0 FROM t0 ORDER BY c0 LIMIT 1
OFFSET 2))) IS NULL) OR

((t0.c0 <= t0.c2) AND
(t0.c0 <> (SELECT c0 FROM t0 ORDER BY c0 LIMIT 1
OFFSET 2))) OR

NOT ((t0.c0 <= t0.c2) AND
(t0.c0 <> (SELECT c0 FROM t0 ORDER BY c0 LIMIT 1
OFFSET 2))))AND TRUE;

Figure 6: Queries triggering a logic bug in the one-pass opti-
mization of SQLite.

bugs. Notably, none of the existing approaches could find
the 8 logic bugs related to correlated subqueries, as they can-
not support semantically complex features. EET, benefiting
from expression-level manipulation, is not limited to specific
query patterns and can generally support all the listed features.
Therefore, EET can find many bugs beyond the capabilities
of existing approaches.
Root Cause Analysis. We investigated the 19 fixed logic
bugs, whose patches and developer feedback are visible. They
consist of 9 bugs in SQLite, 3 in PostgreSQL, and 7 in Click-
House. We found that 12 bugs are caused by incorrect op-
timization. It is expected because EET supports logic bug
detection for complex queries, which has huge potential to be
optimized and thus can cover many optimization mechanisms
in the tested DBMSs. 11 bugs are related to JOIN operations.
Indeed, existing approaches could not systematically test the
DBMS components related to JOIN operations until TQS was
proposed [35], and thus many bugs remain unexposed. These
results indicate that EET can also be used to effectively test
the JOIN mechanism implemented in the tested DBMSs (e.g.,
the hash-join bug shown in Figure 2). Different from TQS,
EET can also detect bugs in other DBMS components, such
as a bug in the JIT components used for expression compi-
lation in ClickHouse. The following shows three interesting
bug examples caused by different root causes.
Example 1: Optimization bug in SQLite. Figure 6 shows the
queries triggering a logic bug in the one-pass optimization
of SQLite. The original query is a simple DELETE statement
with a predicate TRUE, which removes 4 rows in the table t0.
EET transforms this query by applying rule No.2 in Table 2
to the predicate TRUE, which is semantic preserving. The
transformed query should also remove 4 rows in t0, but only
3 rows are removed, indicating a logic bug triggered. The root

--- Statements for database generation
CREATE TABLE t0 (c0 UInt32, c1 UInt32,

PRIMARY KEY (c0)) ENGINE = MergeTree;
INSERT INTO t0 VALUES (2, 2);

--- Original query , result set: {FALSE}

SELECT FALSE FROM t0;

--- Transformed query , result set: {TRUE}

SELECT (acos(c0) <> atan(c1)) AND
(NOT (acos(c0) <> atan(c1))) AND
((acos(c0) <> atan(c1)) IS NOT NULL)

OR FALSE from t0;

Figure 7: Queries triggering a logic bug in the JIT compilation
of ClickHouse.

cause is that the transformed query triggered the one-pass
optimization in SQLite, which passes the target table only one
time. For each row, SQLite evaluates whether it satisfies the
predicate. If so, SQLite deletes the row. Because the subquery
in the WHERE clause is behind a short-circuit operator (i.e.,
AND operation), SQLite evaluates it after one or more rows
have already been deleted, and SQLite thus produces a wrong
result for the subquery, which at the end makes a row in table
t0 not deleted. SQLite developers fix this bug by disabling
the one-pass optimization when the processed query contains
a subquery in its WHERE clause.

Example 2: JOIN bug in PostgreSQL. Figure 2 shows the
query triggering an ancient logic bug in the hash-join imple-
mentation of PostgreSQL. Specifically, PostgreSQL built a
hash table for the INNER JOIN tables (i.e., t1 and t0) in the
FROM clause. Their hash table was affected by a PostgreSQL
data structure, Param, a parameter used for passing values
into and out of subqueries or from nested loop joins to their
inner scans. PostgreSQL must rebuild the hash table when
specific Param values are updated. However, in some cases,
the inner hash-key expressions for the hash table reference
some Params whose changes are unexpectedly missed by
PostgreSQL. The transformed query in Figure 2 updated such
Params while PostgreSQL did not perceive the changes of
these Params, as a result of which PostgreSQL incorrectly
reused the outdated hash table and produced wrong results.
PostgreSQL developers fixed this bug by invoking specific
functions to take the missed Params into account.

Example 3: JIT bug in ClickHouse. Figure 7 shows the query
triggering a logic bug in the JIT compilation of ClickHouse.
The original query is a simple SELECT statement. EET trans-
forms the FALSE expression in the SELECT clause, applying
rule No.1 in Table 2. The transformed query trigger the JIT
compilation of ClickHouse because the query repeatedly uses
the expression acos(c0)<> atan(c1). To speed up the
query execution, ClickHouse compiles this expression into
machine code that can be executed by CPUs directly. How-
ever, the JIT compiler incorrectly compiled the non-equal op-
eration (i.e., <>), and thus the machine code produced wrong



--- Statements for database generation
CREATE TABLE t0 (c0 INT, c1 INT);
CREATE TABLE t1 (c0 INT, c1 INT, c2 REAL,

c3 REAL, c4 INT);
INSERT INTO t0 VALUES(14, 24000);
INSERT INTO t1 VALUES(85, 95000, 97.87, 0.0, 0);

--- Original query , result set: {1}

SELECT DISTINCT 1 AS c1
FROM ((t1 AS ref_0 RIGHT OUTER JOIN t0 AS ref_1

ON ref_0.c4 = ref_1.c0)
LEFT OUTER JOIN

(t1 AS ref_2 LEFT OUTER JOIN t0 AS ref_3
ON ref_2.c1 = ref_3.c0)

ON (((SELECT c1 FROM t0 ORDER BY c1 LIMIT 1) IN (
SELECT ref_4.c0 AS c0 FROM t1 AS ref_4)) IS TRUE))

WHERE ref_2.c3 <= ref_2.c2;

--- Transformed query , result set: empty

SELECT DISTINCT 1 AS c1
FROM ((t1 AS ref_0 RIGHT OUTER JOIN t0 AS ref_1

ON ref_0.c4 = ref_1.c0)
LEFT OUTER JOIN

(t1 AS ref_2 LEFT OUTER JOIN t0 AS ref_3
ON ref_2.c1 = ref_3.c0)

ON (((SELECT c1 FROM t0 ORDER BY c1 LIMIT 1) IN (
SELECT ref_4.c0 AS c0 FROM t1 AS ref_4)) IS TRUE))

WHERE CASE WHEN TRUE THEN ref_2.c3 <= ref_2.c2
ELSE ref_2.c3 <= ref_2.c2 END;

Figure 8: SQLite logic bug triggered by the original query.

results when comparing the NaN value returned from acos
(c0). Therefore, the transformed query produces an unrea-
sonable result. The developers fix this bug by repairing the
function responsible for compiling the non-equal operation.
Bug Manifestations. While analyzing the 19 fixed logic bugs,
we found another interesting phenomenon: a logic bug can be
triggered by either the transformed query, the original query,
or both of them. Specifically, 10 of the 19 bugs are triggered
by the transformed queries (e.g., Example 1-3), while 8 bugs
are triggered by the original queries (e.g., Example 4). Inter-
estingly, EET found a logic bug triggered by both the trans-
formed query and the original query (i.e., Example 5), whose
results are different. These results demonstrate that EET can
catch a logic bug if any discrepancy is incurred between their
result, independently of which query is the culprit.
Example 4: Bug triggered in the original queries. Figure 8
shows a case where the original query triggers a bug in SQLite.
The original query contains the DISTINCT keyword, and its
FROM clause consists of multiple join tables with many join
conditions specified in the corresponding ON clauses, while
the predicate in the WHERE clause is a simple comparison
expression. In this case, SQLite applies the omit-outer-join
optimization, which can reduce the useless join tables (e.g.,
ref_3) that are not referenced outside their JOIN expressions.
However, this optimization did not work well when SQLite
also flattened the subqueries in the JOIN expressions (e.g.,
the two subqueries in the last ON clause). As a result, SQLite
incorrectly reduced the tables consisting of the flattened sub-

--- Statements for database generation
CREATE TABLE t0 (c0 TEXT);
CREATE TABLE t1 (c0 INT4, c1 INT4, c2 TEXT,

c3 INT4, c4 FLOAT8, c5 INT4);
CREATE TABLE t2 (c0 TEXT, c1 TIMESTAMP);
CREATE VIEW t3 AS
SELECT '1' AS c_0
FROM ((SELECT ref_0.c0 AS c_0 FROM t0 ref_0

GROUP BY ref_0.c0) subq_0
FULL JOIN t2 ref_1 ON (subq_0.c_0 = ref_1.c0))

WHERE ref_1.c1 > ref_1.c1;
CREATE VIEW t4 AS
SELECT ref_1.c5 AS c_2, ref_1.c4 AS c_3,

ref_1.c1 AS c_4, 1 AS c_6, ref_1.c3 AS c_9
FROM (t3 ref_0 RIGHT JOIN t1 ref_1

ON (ref_0.c_0 = ref_1.c2));
INSERT INTO t1 VALUES (11000, 0, null, 0, 0.0, 15);

--- Original query , result set: {0}

SELECT COUNT(*) AS c_6
FROM (t1 AS ref_0 LEFT OUTER JOIN t4 AS ref_1

ON (ref_0.c0 = ref_1.c_2))
WHERE ref_1.c_3 =

DCBRT(CASE WHEN ref_0.c2 LIKE '7%z'
THEN ref_1.c_6 ELSE ref_0.c4 END);

--- Transformed query , result set: {1}

SELECT COUNT(*) AS c_6
FROM (t1 AS ref_0 LEFT OUTER JOIN t4 AS ref_1

ON (ref_0.c0 = ref_1.c_2))
WHERE (CASE WHEN ((ref_1.c_9 >= ref_1.c_4)

OR (NOT (ref_1.c_9 >= ref_1.c_4))
OR ((ref_1.c_9 >= ref_1.c_4) IS NULL))

THEN ref_1.c_3 ELSE ref_1.c_3 END) =
DCBRT(CASE WHEN ref_0.c2 LIKE '7%z'

THEN ref_1.c_6 ELSE ref_0.c4 END);

Figure 9: PostgreSQL logic bug triggered by both the original
query and the transformed query.

queries and thus produced wrong results for the original query.
EET transforms the predicate in the WHERE clause of the orig-
inal query to a CASE WHEN expression. Such transformation
makes the predicate complex and blocks the buggy omit-outer-
join optimization, and thus SQLite produced correct results
for the transformed query. SQLite developers fix this bug by
adding restrictions for applying omit-outer-join optimization.

Example 5: Bug triggered in both two queries. Figure 9 shows
the test case where both the original query and the transformed
query trigger the same logic bug in PostgreSQL. EET trans-
forms the expression ref_1.c_3 in the WHERE clause of the
original query to a CASE WHEN expression, which unexpect-
edly makes the transformed query return different results. We
reported the test case to PostgreSQL developers, who con-
firmed that both the two queries in the test case triggered a
bug according to their query plans. Figure 10 shows their
query plans. Their query plans are nearly the same, and the
only difference is that the original query used a hash join,
while the transformed query used a hash right join. Both
query plans are problematic because they lose join filters,
which are responsible for filtering the rows that satisfy the



QUERY PLAN: Original Query / Transformed Query
Aggregate
|-- Hash Join / Hash Right Join

Hash Cond: (ref_1.c5 = ref_0.c0)

MISSING: Join Filter: (ref_1.c4 / CASE... = dcbrt(...))

|-- Nested Loop Left Join
Join Filter: ('1'::text = ref_1.c2)

|-- Seq Scan on t1 ref_1
|-- Materialize

|-- Seq Scan on t2 ref_1_1
Filter: (c1 > c1)

|-- Hash
|-- Seq Scan on t1 ref_0

Figure 10: Query plans of the original query (using hash join)
and the transformed query (using hash right join) in Figure 9.

predicate in the WHERE clauses. The root cause of this logic
bug is that PostgreSQL removed some unnecessary LEFT
JOIN tables that are underneath other LEFT JOIN but failed
to clean the data structures referencing the removed tables,
causing PostgreSQL to consider that the join filters affected
by such data structures are unreasonable and drop them. After
the bug is fixed, the query plans of both the origin query and
the transformed query contain their corresponding join filters.

5.4 Comparative Study

To check whether EET can find logic bugs missed by existing
approaches, we investigate the earliest bug-inducing versions
of the 35 logic bugs EET found and check whether these
versions are before the existing approaches got published.
We would conclude that EET can find logic bugs missed by
existing approaches if some long-latent bugs are found by
EET. This comparison is reasonable and objective because:
(1) all logic bugs found by EET are not marked as duplicates
by developers, meaning that no approach found these bugs
until EET found them; (2) all the 5 DBMSs in our evaluation
have been extensively tested by existing approaches [4,11,25–
27, 29, 35], meaning that the existing approaches did not find
the long-latent bugs found by EET during their evaluation.

We classify the existing approaches according to the years
they got published, resulting in 2 classes: 2020 (PQS [27],
TLP [26], NoREC [25]) and 2023 (TQS [35], Pinolo [11],
DQE [29]). Therefore, we check whether the versions induc-
ing the logic bugs found by EET are before 2020 and 2023.
Table 6 shows the results.

Among 35 logic bugs found by EET, 13 already existed
before 2020 (i.e., bugs were involved in 2019 or earlier), in-
dicating that all the existing approaches miss these 13 logic
bugs in their extensive evaluation, as all these approaches
are proposed in or after 2020. In addition, 11 logic bugs
can be triggered between 2020 and 2022, while none of the
three approaches (i.e., TQS, Pinolo, and DQE) published in
2023 found these bugs. These results indicate that existing

Table 6: Latency of the logic bugs found by EET

DBMS Found
Bug-involved year

Longest latency
< 2023 < 2020

MySQL 10 9 6 6 years
PostgreSQL 3 1 1 20 years
SQLite 9 5 4 8 years
ClickHouse 11 7 2 4 years
TiDB 2 2 0 3 years

Total 35 24 13 20 years

approaches indeed miss many long-latent logic bugs. Due to
the inherent limitations of query-level manipulation, these ap-
proaches have to limit the patterns of their generated queries
and thus cannot be applied to complex queries (e.g., the bug-
triggering queries in Figure 2), while many DBMS bugs can
be triggered only by complex queries [13]. Empowered by
expression-level manipulation, EET can be easily applied to
complex queries and thus successfully found many logic bugs
missed by existing approaches.

We investigate the longest latency of the logic bugs found
by EET for each tested DBMS. The result is shown in Table 6.
Interestingly, for each tested DBMS, EET can find at least
one bug whose latency is longer than 3 years. The bug with
the longest latency, i.e., 20 years, is found in PostgreSQL,
which is shown in Figure 2. These results demonstrate that
EET can effectively find long-latent bugs.

While EET can find many logic bugs missed by existing ap-
proaches, it may inherently miss some bugs that can be found
by existing approaches. For example, if a logic bug makes
both the original query and the transformed query produce
the same incorrect results, EET will miss this bug. However,
approaches like PQS [27] can help detect such missed bugs
by inferring the expected query results. One interesting future
work is to integrate EET and existing approaches into a test-
ing framework that can efficiently schedule these approaches
during testing DBMSs.

6 Related Work

Logic Bug Detection in DBMSs. Several approaches have
been proposed to detect logic bugs in DBMSs [11, 25–27, 29,
35]. PQS [27] synthesizes a query that guarantees to return
a specific row using its manually implemented interpreter.
If the tested DBMS fails to fetch the row, PQS identifies
a logic bug. NoREC [25] generates a query with a predi-
cate and transforms this query by moving its predicates from
its WHERE clause to its SELECT clause. NoREC identifies a
logic bug if the moved predicate produces different results.
TLP [26] partitions an original query into three separated
queries by decomposing its predicate. The union of the re-



sults of these separated queries should be consistent with
the result of the original one, otherwise, a logic bug is trig-
gered. SQLancer [30] integrates the above three techniques
and has been deployed to test various DBMSs. In addition,
DQE [29] generates different types of queries (e.g., SELECT,
UPDATE, and DELETE) with the same predicates. These differ-
ent queries should operate the same rows, otherwise, a logic
bug is triggered. Pinolo [11] modifies the predicate of a query,
making its constraints looser/stricter. Therefore, the modified
query should return a superset/subset of the results of the orig-
inal query, otherwise, Pinolo identifies a logic bug. TQS [35]
applies schema normalization [7, 22] to slit a wide table into
multiple tables and construct a customized query using join
tables, whose ground truth results can be inferred from the
original wide table. Based on these ground truth results, TQS
finds many logic bugs related to JOIN operations.

As discussed in Section 1 and 2, all these approaches are
based on query-level manipulation, which requires the ap-
proaches to understand the semantics of the manipulated
queries. Therefore, existing approaches cannot be applied to
complex queries whose semantics are complicated. Different
from existing approaches, EET is based on expression-level
manipulation, which operates on expressions and has no ne-
cessity to understand the query semantics. Therefore, EET
does not need to limit the query patterns and thus can be
applied to various queries.
DBMS Test-Case Generation. Without focusing on logic
bugs, some approaches [9, 13, 17, 33, 38] are proposed to gen-
erate more diverse test cases for DBMSs. SQLsmith [33] is a
grammar-based DBMS fuzzer, which embeds the AST rules
of SQL language and can generate complex SQL statements.
SQUIRREL [38] proposes a new intermediate representation
to model SQL queries and infers the dependencies between
statements. In this way, SQUIRREL can generate queries
that contain multiple SQL statements. Griffin [9] performs
grammar-free mutation to test DBMSs by summarizing the
DBMS state information into its metadata graph and mutat-
ing SQL queries according to the graph to prevent semantic
errors. DynSQL [13] performs dynamic query interaction
to capture the latest DBMS state information and incremen-
tally generate complex and valid queries. In addition, some
approaches [2, 18] are proposed to improve the test-case gen-
eration for logic bug detection. SQLRight [18] enables code
coverage feedback, which gives the supported test oracles
more chance to find logic bugs in rarely executed DBMS
code. QPG [2] records the covered query plans during testing
DBMSs and prioritizes mutating the queries that trigger new
query plans, which is more likely to expose a new logic bug.

These approaches and EET can complement each other. On
one hand, the high-quality and diverse queries generated by
these approaches can help EET find more logic bugs hidden
in the corner logic of DBMSs. On the other hand, the general
test oracle provided by EET can enable these approaches to
catch more various bugs.

7 Conclusion

In this paper, we propose a new and fine-grained method-
ology, expression-level manipulation, for approaching logic-
bug-detection problems in DBMSs without limiting the query
patterns. Based on this methodology, we propose a novel
and general approach, equivalent expression transformation
(EET), which can effectively find logic bugs using two trans-
formations: determined boolean expressions and redundant
branch structures. We evaluate EET on 5 widely used DBMSs.
In total, EET found 66 bugs, 35 of which are logic bugs. Many
of these logic bugs have long latency and are missed by exist-
ing approaches. We believe the generality and effectiveness of
EET can inspire more follow-up research on DBMS testing.
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