
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Hybrid Static-Dynamic Analysis of Data Races
Caused by Inconsistent Locking Discipline in

Device Drivers
Jia-Ju Bai, Qiu-Liang Chen, Zu-Ming Jiang, Julia Lawall, and Shi-Min Hu

Abstract—Data races are often hard to detect in device drivers. According to our study of Linux driver patches that fix data races,
about 39% of patches involve a pattern that we call inconsistent locking discipline. Specifically, if a variable is accessed within two
concurrently executed functions, the sets of locks held around each access are disjoint, at least one of the locksets is non-empty, and
at least one of the involved accesses is a write, then a data race may occur. In this paper, we present a hybrid static-dynamic analysis
approach, named SDILP, to detect data races caused by inconsistent locking discipline in device drivers. SDILP has a dynamic lockset
analysis to detect data races at runtime, and a static lockset analysis to detect more data races based on the dynamic-analysis results.
It also performs a static taint analysis to reduce the number of variable accesses monitored by the dynamic analysis. Compared to our
previous dynamic approach DILP [1], introducing static analysis allows SDILP to achieve better performance and find more data races.
We evaluate SDILP on 12 drivers in Linux 5.4, and find 117 real data races, 50 of which have been confirmed by driver developers.

Index Terms—Data race, inconsistent locking discipline, device driver, static analysis, dynamic analysis.

F

1 INTRODUCTION

CONCURRENT execution in device drivers improves pro-
gram performance on modern multi-core processors,

but can introduce concurrency problems. Studies [2]–[4]
have shown that many of the reported driver bugs are
due to concurrency problems, and that these concurrency
problems are often hard to detect [3]. A common kind of
concurrency problem is a data race. A data race occurs when
multiple threads access the same memory location without
proper synchronization and at least one access is a write [5].
Data races can introduce non-determinism, making them
hard to debug, and they can cause serious problems such
as functionality errors and undefined behaviors.

Most previous approaches [6]–[19] to detecting data
races target user-level applications, and these approaches
have some important requirements satisfied by user-level
code. For example, many approaches, such as Helgrind [17],
DPST [18] and FSAM [19], require to start concurrency
analysis from a fixed entry point, such as a main() func-
tion. Besides, many approaches, such as Acculock [12],
Chord [10] and CTrigger [11], require to completely monitor
thread creation and deletion, in order to infer a happens-
before relation [20].

However, kernel-level device drivers do not satisfy these
requirements, and avoiding these requirements would re-
quire significant modification to the design and imple-
mentation of the existing user-level approaches. More im-
portantly, without these requirements, existing user-level
approaches cannot work or they may report lots of false

• Jia-Ju Bai, Qiu-Liang Chen, Zu-Ming Jiang and Shi-Min Hu are with the
Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, China. E-mail: baijiaju@tsinghua.edu.cn, {chenql16,
jzm18}@mails.tsinghua.edu.cn, shimin@tsinghua.edu.cn.

• Julia Lawall is with Inria, Paris, France. E-mail: julia.lawall@inria.fr.

results. On the one hand, existing user-level approaches that
start concurrency analysis from one fixed entry point cannot
test device drivers, as a driver does not have such a fixed
entry point [21], [22]. A possible solution is to regard kernel-
driver interfaces and interrupt-handler functions as multiple
entry points (similar to DCUAF [23]), but the concurrency
analysis of these user-level approaches would have to be
redesigned for two important reasons. First, alias analysis
starting from one entry point is ineffective for identifying
alias relationships of data flows starting from multiple en-
try points. Second, analyzing data-flow interleavings from
multiple entry points is more complex than from one entry
point. On the other hand, device drivers typically do not
run in their own threads, so it is not feasible to completely
monitor thread creation and deletion for happens-before-
relation inference by analyzing only driver code. A possible
solution is to use memory watchpoints to monitor the order
of accesses based on physical clocks. However, observing
a given order is not sufficient to ensure that the same
order must always occur. Instead, a happens-before relation
should be inferred based on logical clocks determined by
several clock conditions [14], [24], such as thread creation
and deletion order of accessed memory. Memory watch-
points can also introduce much runtime overhead. Finally, a
practical difficulty of driver race detection is that the driver
code can be interrupted, by an interrupt handler that shares
the same stack. In this case, a dynamic analysis that does
not distinguish between regions of the stack may incorrectly
consider that locks held by the driver are providing protec-
tion for the accesses of the interrupt handler.

To detect data races in kernel-level device drivers, some
previous approaches [25]–[29] use static analysis, but they
often report many false positives, due to lacking exact
runtime information about memory accesses and synchro-
nization. Several previous approaches [30]–[34] use dynamic

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

analysis to detect data races in drivers. They are based on
sampling or lockset analysis. Sampling-based approaches,
such as DataCollider [30], DRDDR [31] and KCSAN [34],
check variable accesses in real time at a given sampling
frequency. However, they may miss real data races when the
sampling frequency is low, and they may introduce much
runtime overhead when the sampling frequency is high.
To avoid the dependency on the sampling frequency and
detect more data races, lockset analysis approaches, such
as Eraser [32] and KernelStrider [33], check the set of locks
protecting shared-variable accesses.

The traditional lockset analysis (Eraser) [32] is based on
the assumption that all accesses to a shared variable can
potentially be executed concurrently and thus need to be
protected by locks. Accordingly, for each variable that may
be shared (referred to subsequently as a possible shared vari-
able) v, globally across the execution, the analysis maintains
a set C(v) that contains the set of locks that are held across all
previous observed accesses to v. C(v) initially contains all of
the locks available in the system. When an access to v occurs,
C(v) is updated to the intersection of C(v) with the currently
held set of locks. A race is reported if C(v) becomes empty.
This lockset is based on an over-aggressive hypothesis that
all accesses to a given variable v can occur concurrently with
each other. However, this hypothesis is false in many cases.
For example, initialization may occur before the variable is
shared, in which case a data race is impossible. Thus, the tra-
ditional lockset analysis often reports many false positives.
Moreover, to maintain locksets, this analysis instruments all
variable accesses and monitors them, which can introduce
much runtime overhead. Besides, this analysis may miss
data races involving variables that are not accessed in a
particular execution. To address these issues, we propose
two new techniques.

First, to reduce false positives, we refine the lockset
analysis by adding more constraints on the set of variables
that are considered and the locksets that are compared.
Specifically, we only compare locksets of accesses occurring
in functions that are actually executed concurrently, thus
providing stronger evidence that the accesses may conflict.
Besides, we perform this check only when one of the ac-
cesses is a write and when one of the accesses is protected by
at least one lock (we refer to such an accessed variable as a
possible raced variable), reflecting that developers understand
a concurrent access is possible. If a variable is accessed within
two concurrently executed functions, the sets of locks held around
each access are disjoint, at least one of the locksets is non-empty,
and at least one of the involved accesses is a write, then a data
race may occur. We call the pattern causing this data race
inconsistent locking discipline, analogous to the consistent
locking discipline used to describe Eraser [32]. Compared to
the traditional lockset analysis, our strategy can drastically
reduce the number of false positives, as it only reports data
races when there is strong evidence that a race is possible.

Second, we introduce static analysis to enhance dynamic
analysis. On the one hand, to reduce the runtime overhead
of monitoring variable accesses, we perform a static taint
analysis of the driver code to identify possible shared-
variable accesses, and only instrument such accesses for
runtime monitoring, instead of all variable accesses. On the
other hand, we observe that some variable accesses have the

same contexts as the found data races, namely they access
the same variables, occur in the same function and hold the
same locks, but these accesses are not covered by dynamic
analysis. Such accesses can also cause data races, but are
missed by dynamic analysis. Based on this observation,
according to the data races found by dynamic analysis, we
perform a static lockset analysis of the driver code to detect
data races missed by dynamic analysis.

Based on the above ideas, we propose a hybrid static-
dynamic approach named SDILP, to detect data races caused
by inconsistent locking discipline in device drivers. SDILP
consists of three phases. First, at compile time, SDILP per-
forms a static taint analysis of the driver code, to identify
and instrument the variable accesses affected by global vari-
ables and pointer-typed function arguments, because they
are often the source of shared variables [26], [35]. Second,
during driver execution, SDILP monitors the instrumented
variable accesses and executed driver functions. It records
information about each instrumented variable access, in-
cluding the location, lockset, accessed variable, etc., and
identifies the driver functions that are concurrently executed
at runtime. With this runtime information, SDILP performs
a dynamic lockset analysis to detect data races caused by in-
consistent locking discipline. Finally, after driver execution,
according to the data races found by the dynamic analysis,
SDILP performs a static lockset analysis of the driver code to
detect data races missed by the dynamic analysis. We have
implemented SDILP using the Clang compiler [36].

The hybrid static-dynamic analysis of SDILP is novel
for data-race detection in device drivers. In particular, this
analysis is the first to extend the race-detection results of
dynamic analysis via static analysis. Moreover, different
from existing hybrid static-dynamic approaches [37], [38]
that use static analysis to identify possible raced instruction
pairs, SDILP uses static taint analysis to identify possible
shared-variable accesses, which can help to find more data
races involving complex alias relationships missed by these
approaches. Compared to our previous approach DILP [1],
SDILP can detect more data races with less runtime over-
head, benefiting from this hybrid static-dynamic analysis.
Overall, we make four main contributions:

• We study Linux driver patches and find that about
39% of the patches fixing data races involve inconsis-
tent locking discipline, indicating that many reported
data races in device drivers are caused by this issue.

• We propose to use static analysis to enhance dynamic
analysis in data-race detection, in two respects: 1)
reducing the runtime overhead, and 2) extending the
race-detection results.

• We implement a hybrid static-dynamic approach
named SDILP, to effectively detect data races caused
by inconsistent locking discipline in device drivers.

• We evaluate SDILP on 12 device drivers in Linux
3.3.1 (April 2012) and 5.4 (November 2019). SDILP
finds 165 real data races in Linux 3.3.1, and 64 of
them have been fixed in Linux 5.4. SDILP finds
117 real data races in Linux 5.4, and 50 of them
have been confirmed by driver developers. We also
compare SDILP to two existing kernel race checkers
(KernelStrider and KCSAN), and SDILP finds many
data races missed by these checkers.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

The rest of this paper is organized as follows. Section 2
motivates our work. Section 3 introduces SDILP. Section 4
introduces the evaluation. Section 5 gives some discussion.
Section 6 presents related work, and Section 7 concludes.

2 MOTIVATION

In this section, we first motivate our work using a real driver
race, and then present our study of Linux driver patches.

2.1 Motivating Example
Figure 1 shows a real data race in the rtl8723ae device driver.
This data race was first introduced in Linux 3.18 (released in
December 2014). The function rtl_ps_set_rf_state can
be concurrently executed with the function rtl8723e_-
dm_watchdog. In the function rtl_ps_set_rf_state,
the variable ppsc->rfchange_inprogress is assigned
on line 167, while holding a spinlock acquired on line 166.
However, in the function rtl8723e_dm_watchdog, the
variable ppsc->rfchange_inprogress is read on line
845 without holding the spinlock. Thus, a data race on
ppsc->rfchange_inprogress may occur. This data race
has been confirmed to be harmful by the developer. In-
deed, the raced variable ppsc->rfchange_inprogress
is checked in the branch condition on line 845 and affects
the execution of various functions related to power man-
agement (line 849 and 850) that should not be used when a
driver state change is in progress. This data race was first
fixed in Linux 4.8 (released in October 2016), by acquiring
the spinlock in rtl8723e_dm_watchdog.1 Namely, it per-
sisted over 10 mainline releases (nearly 2 years).

This example illustrates the pattern of inconsistent lock-
ing discipline that may cause data races. Specifically, if a
variable is accessed within two concurrently executed functions,
the sets of locks held around each access are disjoint, at least one of
the locksets is non-empty, and at least one of the involved accesses
is a write, then a data race may occur. Compared to cases
where the two involved accesses hold no locks, inconsistent
locking discipline provides stronger evidence of concurrent
execution, because at least one of the involved accesses is
protected by a lock.

FILE: linux-3.18/drivers/net/wireless/rtlwifi/rtl8723ae/dm.c
829. void rtl8723e_dm_watchdog(...) {

 ……
+++. spin_lock(&rtlpriv->locks.rf_ps_lock);
845. if (... && (!ppsc->rfchange_inprogress)) {

849. rtl8723e_dm_dynamic_bb_powersaving(hw);
850. rtl8723e_dm_dynamic_txpower(hw);

855. }
+++. spin_unlock(&rtlpriv->locks.rf_ps_lock);
856. if (rtlpriv->btcoexist.init_set)
857. rtl_write_byte(...);
858. }

FILE: linux-3.18/drivers/net/wireless/rtlwifi/ps.c
79. bool rtl_ps_set_rf_state(...) {

 ……
165. if (!protect_or_not) {
166. spin_lock(&rtlpriv->locks.rf_ps_lock);
167. ppsc->rfchange_inprogress = false;
168. spin_unlock(&rtlpriv->locks.rf_ps_lock);
169. }
170. return actionallowed;
171. }
172. EXPORT_SYMBOL(rtl_ps_set_rf_state);

Fig. 1. A fixed data race in the rtl8723ae driver of Linux 3.18.

1. Patch link: https://patchwork.kernel.org/patch/9198639/

TABLE 1
Study result of Linux driver patches

Driver class Race Pattern Proportion
Wireless 52 16 30.8%
Ethernet 50 20 40.0%
Sound 24 10 41.7%
Multimedia 33 16 48.5%
MMC 11 4 36.4%
RDMA 82 32 39.0%
Total 252 98 38.9%

2.2 Study of Linux driver patches

To understand the proportion of reported data races caused
by inconsistent locking discipline, we study Linux driver
patches in the Patchwork project for OS kernel [39], which
is used by a number of Linux kernel maintainers to collect
patches pending for the next release. We select the accepted
race-fixing patches from April 2015 to April 2018, by search-
ing the patch titles. We focus on the patches of 6 driver
classes: wireless controller, Ethernet controller, sound card,
media, MMC (multimedia card) and RDMA drivers. We
find 252 accepted patches that fix data races. Among these
patches, we manually identify those that explicitly involve
inconsistent locking discipline in the driver code. The results
are shown in Table 1, including the driver class, the number
of the accepted race-fixing patches (Race), and the number
(Pattern) and percentage (Proportion) of accepted patches
that involve inconsistent locking discipline.

From Table 1, we find that 39% of the accepted race-
fixing patches involve inconsistent locking discipline. The
remaining patches target other patterns of data races, such
as accessing the involved variable without holding any
lock or without disabling interrupts where needed. In the
patches involving inconsistent locking discipline, most data
races are fixed by: 1) adding new calls to lock and unlock
functions to protect the raced variables; or 2) moving ex-
isting calls to lock and unlock functions to a place that
can protect the raced variables. These fixes suggest that the
fixed races were introduced because: 1) the driver devel-
oper forgot that the function containing the access can be
concurrently executed with another function accessing the
same shared variable, and thus did not add lock protection;
or 2) the driver developer remembered to add some lock
protection, but the lock protection is incomplete. Indeed,
these two reasons are difficult to avoid in driver develop-
ment, as whether two variable accesses can be concurrently
executed is often hard to statically determine [21], [22],
[40], [41]. Thus, inconsistent locking discipline is likely to
be introduced, which may cause data races. Considering
that the percentage 39% is not small, even though it might
not precisely reflect the rate of such races in the Linux
kernel, we believe that it is worthy to design a specific and
effective approach to accurately detect the data races caused
by inconsistent locking discipline in device drivers.

3 APPROACH

In this section, we first introduce our core idea of hybrid
static-dynamic race detection, then present the architecture
and phases of SDILP, and finally discuss its improvements
over our previous approach DILP [1].

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3.1 Core Idea

To improve the performance and race-detection coverage of
dynamic analysis, our core idea is introducing static analysis
to achieve two benefits. First, inspired by Spindle [42],
which uses static analysis to reduce the runtime overhead
of dynamic analysis in memory-error detection, we use a
static taint analysis to identify which variable accesses are
related to possible shared variables; indeed, other variable
accesses are useless in data-race detection. In this way,
we can monitor only the identified accesses, to effectively
reduce the runtime overhead of dynamic analysis. Second,
we use a static lockset analysis to detect data races that
involve the same contexts as the reported data races but
are not covered by the dynamic analysis. Besides data races,
we believe this idea is applicable to detecting other kinds of
problems via dynamic analysis.

Based on our core idea, we perform three steps to de-
tect data races caused by inconsistent locking discipline.
First, at compile time, we perform a static taint anal-
ysis of the driver code, to identify and instrument the
variable accesses affected by global variables and pointer-
typed function arguments, because they are often the source
of shared variables [26], [35]. We also instrument driver-
function entry and exit points, to help identify concurrently
executed driver functions. Second, during driver execution,
we monitor the instrumented variable accesses and exe-
cuted driver functions. We record information about each
instrumented variable access, including location, lockset,
accessed variable, etc., and identify concurrently executed
functions. With this information, we perform a dynamic
lockset analysis to detect data races caused by inconsistent
locking discipline. Finally, after driver execution, according
to data races found by the dynamic analysis, we perform a
static lockset analysis of the driver code to detect data races
missed by the dynamic analysis.

(At Compile Time)

SDILP
Runtime
Monitor

Driver Source Files

Loadable Driver Runtime Information Partial Race Report

Race
Detector

Code
Analyzer

(At Runtime)(At Runtime)

Race
Extender

(After Runtime)

Final Race Report

Fig. 2. Overall architecture of SDILP.

3.2 Architecture

Based on the idea in Section 3.1, we design a hybrid static-
dynamic approach named SDILP, to detect data races caused
by inconsistent locking discipline in device drivers. We have
implemented SDILP with Clang [36], and perform analysis
and code instrumentation on driver LLVM bytecode. Figure
2 shows the architecture of SDILP, which has four parts:

• Code analyzer. This part compiles the driver source
code, performs static taint analysis and instrumenta-
tion of the driver LLVM bytecode, and finally gener-
ates a loadable driver.

• Runtime monitor. This part uses the instrumented
code to monitor driver execution and collect runtime
information. To avoid modifying the OS kernel, this
part is implemented as a kernel module.

• Race detector. This part uses dynamic lockset analy-
sis to analyze the collected runtime information and
detect data races during driver execution.

• Race extender. This part uses static lockset analysis
to detect data races missed by dynamic analysis after
driver execution, by analyzing the driver code and
the data races found by dynamic analysis.

3.3 Phases

3.3.1 Code Analysis
In this phase, SDILP performs two main tasks:

Identifying possible shared-variable accesses. In a driver
function, some kinds of variables cannot be shared by
multiple threads, such as local variables and non-pointer-
typed function arguments, and thus the accesses to such
variables are not useful to detecting data races. In fact,
shared variables are often related to global variables and
pointer-typed function arguments [26], [35]. Thus, if a vari-
able access is related to such variables, SDILP identifies it
as a possible shared-variable access and instruments this
access for runtime monitoring; otherwise, SDILP does not
handle this access. For this purpose, SDILP performs a static
taint analysis of the driver code to identify possible shared-
variable accesses at compile time.

Because SDILP is designed to detect data races, the main
challenge of our static taint analysis is how to accurately
and efficiently identify possible shared-variable accesses in
driver code. On the one hand, to reduce false negatives of
data-race detection in dynamic analysis, it is important to
identify all shared-variable accesses in static taint analysis.
For this purpose, our static taint analysis performs flow-
sensitive taint analysis to accurately identify possible shared
variables. On the other hand, a device driver has many
functions and variable accesses, and thus it is important to
reduce the analysis time. For this purpose, our static taint
analysis performs efficient intra-procedural analysis of each
driver function, and avoids infinite looping on loops and
recursive calls.

Figure 3 presents the static taint analysis for a driver
function func. It produces a set access set that collects all
instructions of possible shared-variable accesses in the func-
tion. The analysis first initializes access set to the empty set
(line 1), and then analyzes each possible code path (lines 2-
23). To avoid infinite looping on loops and recursive calls,
the analysis of a code path ends when encountering a basic
block that is already been handled in this code path. When
analyzing a code path, the analysis uses a set val set to store
all possible shared variables at the LLVM bytecode level,
and initializes this set with the pointer-typed function ar-
guments and global variables (lines 3-9). Then, the analysis
checks each instruction inst in the code path (lines 10-22).
For inst, the analysis gets its result variable res val (if inst has
no result variable, res val is a null value), the set of operands
op val set and the instruction type inst type. The analysis
checks whether op val set and val set have a non-empty
intersection, to judge whether inst has an operand identified

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

1

Procedure: Identifying possible shared-variable accesses in the function func

1: access_set := ø;
2: foreach code_path in GetCodePathSet(func) do
3: val_set := ø;
4: foreach arg_val in GetArgPtrSet(func) do
5: AddSet(arg_val, val_set);
6: end foreach
7: foreach global_val in GlobalValSet(func) do
8: AddSet(global_val, val_set);
9: end foreach

10: foreach inst in GetInstSetInPath(code_path) do
11: res_val := GetResultVal(inst);
12: op_val_set := GetOperandVal(inst);
13: inst_type := GetInstType(inst);
14: if CheckSetIntersect(op_val_set, val_set) then
15: if GetValType(res_val) == PointerType then
16: AddSet(res_val, val_set);
17: end if

 18: if inst_type == LOAD or inst_type == STORE then
19: AddSet(inst, access_set);
20: break;
21: end if
22: end foreach
23: end foreach

Fig. 3. Taint analysis of identifying possible shared-variable accesses.

FILE: linux-5.4/drivers/net/ethernet/broadcom/tg3.c
7915. static netdev_tx_t tg3_start_xmit(struct sk_buff *skb,
7916. struct net_device * dev) {
7917. struct tg3 *tp = netdev_priv(dev); // read dev
7918. u32 base_flags;

7954. base_flags = 0; // write base_flags

8171. tp->tx_dropped++; // read and write tp->tx_dropped
8172. return NETDEV_TX_OK;
8173. }

Fig. 4. Example of identifying possible shared-variable accesses.

as a possible shared variable. If so, inst is considered to be
tainted. If its result variable res val is pointer-typed, res val
is identified as a possible shared variable and added into
val set with no repetition. In this case, if inst is a read
or write operation (namely a LOAD or STORE instruction
in the LLVM bytecode), inst is identified as an instruction
accessing a possible shared variable and is added into
access set with no repetition. After the analysis, access set
stores all identified instructions for possible shared-variable
accesses, which will be instrumented and monitored.

Figure 4 illustrates the taint analysis using the tg3 driver
code. In the function tg3_start_xmit, the variables skb
and dev are pointer-typed function arguments and thus
are considered as possible shared variables. Accordingly,
on line 7917, the read operation of dev is identified as a
possible shared-variable access. Moreover, tp is assigned by
invoking a function on dev, and thus tp is tainted by dev
and identified as a possible shared variable. On line 7954,
the variable base_flags is written, but it is not tainted by
any pointer-typed function argument or global variable, and
thus its access is not identified as a possible shared-variable
access. Finally, as tp is identified as a possible shared vari-
able, the read and write operations of tp->tx_dropped on
line 8171 are identified as possible shared-variable accesses.

In fact, several static approaches [23], [25] can identify
possible raced instruction pairs, and their accessed variables
are considered to be possible shared variables. This strategy
could be useful to further reduce the runtime overhead of
dynamic analysis. However, as these approaches neglect
alias relationships in lockset analysis, many real shared
variables involving alias relationships could be unidentified,
causing related data races to be missed in dynamic analysis.
Thus, SDILP does not use this strategy, and instead uses the
taint analysis in Figure 3 to reduce false negatives.

Code instrumentation. SDILP instruments three kinds of
places in the driver LLVM bytecode:

• Calls to lock and unlock functions. SDILP uses them
to collect the locksets of variable accesses at run-
time. Specifically, SDILP uses the names of common
lock and unlock functions (like spin_lock and
mutex_lock) as described in Linux kernel docu-
ments about locking [43].

• Driver functions. SDILP instruments the entry and
exit points of each driver function, to identify con-
currently executed driver functions at runtime.

• Possible shared-variable accesses. SDILP collects infor-
mation about them for race detection at runtime.

3.3.2 Online Race Detection

In this phase, using the instrumented code, SDILP collects
runtime information and performs dynamic lockset analysis
to detect data races during driver execution.
Runtime monitoring. SDILP monitors possible shared-
variable accesses and maintains locksets for these accesses.
Moreover, SDILP monitors and identifies driver functions
that are concurrently executed. Indeed, SDILP only per-
forms lockset analysis of the variable accesses in these
functions, to reduce false positives of data-race detection. As
a function can be called from different call chains in different
concurrency contexts, SDILP collects the call chains for
concurrently-executed functions. Besides, SDILP specially
monitors interrupt handling, as interrupt handlers always
reuse the normal runtime call stack of the driver. In detail,
these kinds of information are collected as follows:

Possible shared-variable accesses. SDILP monitors each pos-
sible shared-variable access, to record the memory address
and type information (the data type, and the data structure
type and field name, if any) of the accessed variable, the
access type (read or write) and the access location. For
device drivers, a challenge of dynamic analysis is that a
variable may have the same memory address as another
variable that has already been freed by other kernel modules
invisible to dynamic analysis. To distinguish between two
variables having the same memory address, SDILP uses
their type information. For example, suppose that there are
two write operations dev->data = 5 and skb->pos =
10, where dev->data and skb->pos use the same heap-
memory address at different times in the execution. The
two variables’ data types are both integers, but their data
structure types and fields are different, and thus SDILP can
identify them as different variables.

Locksets. SDILP records the calls to lock and unlock func-
tions to collect locksets. For each such call, SDILP records
its location, the function name and the related lock object’s
memory address.

Driver functions. SDILP instruments the entry and exit
points of each driver function to collect the call chains
of variable accesses and the call chains of concurrently
executed functions. SDILP maintains a set that contains the
names of the currently executed functions and the IDs of
the currently running threads. For example, when a driver
function F1 begins to be executed, SDILP adds the function
name and running thread ID to the front of the set. While
F1 is being executed, if another driver function F2 begins

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

to be executed, SDILP looks for the entry of F1 in the
set. If the running thread ID of F1 is different from that
of F2, then F1 and F2 are executed in different threads at
the same time, and thus F1 and F2 are considered to be
concurrently executed. In this case, SDILP records the call
chains of F1 and F2 as a call-chain pair of concurrently
executed functions. When F1 returns, the corresponding
entry is deleted from the set.

Interrupt handling. Hardware interrupts often occur dur-
ing driver execution, and may cause runtime monitoring
to record a call stack that mixes the interrupt context (at
the top of the stack) with the driver context (lower in the
stack) [22]. Specifically, when a hardware interrupt is raised
while a driver function is executing, the driver suspends ex-
ecuting the current function F to execute the corresponding
interrupt handler. In this case, a lock acquired in the function
F may be mistakenly considered to be used in the interrupt
handler, producing incorrect locksets. To solve this problem,
SDILP calls the specific kernel interface in_interrupt in
Linux to check whether the currently executed function is in
interrupt handling. When the driver executes an interrupt
handler, SDILP maintains a separate call chain and lockset.

Race detection. Our previous approach DILP [1] collects
runtime information in a log file during driver execution,
and performs lockset analysis of the log file after driver
execution. However, we observe that DILP introduces much
runtime overhead caused by writing to the log file when
many variable accesses occur at runtime, and thus it some-
times fails to run complex workloads normally. To solve this
problem, SDILP collects runtime information in a memory
buffer and performs an online lockset analysis, without
writing to a log file. Specifically, when a driver function F
ends its execution, given the collected runtime information,
SDILP first identifies the functions that have finished their
execution and are concurrently executed with the function
F, and then performs a lockset analysis of these functions
and F with their calling contexts. After all the functions
that are concurrently executed with the function F have
completed and been analyzed, SDILP drops the collected
runtime information about F to save memory. Compared to
DILP, SDILP has the extra runtime overhead of performing
the online lockset analysis, but it eliminates the runtime
overhead caused by writing to the log file. As a whole, in
our tests, SDILP has lower runtime overhead than DILP.

Figure 5 shows the procedure of this lockset analysis
for a function F and the set Fset containing the functions
that are concurrently executed with F and finish before
the end of the execution of F. First, SDILP identifies the
accesses to possible raced variables in F, if an access is
protected by at least one lock (lines 1-6). The information
about these accesses is collected in race access set. Second,
SDILP compares each possible raced-variable access in F
and each possible shared-variable access in Fset (lines 7-
20), and reports a data race if: 1) their accessed variables
reference the same memory address and have the same
type information; 2) the intersection between their locksets
is empty; 3) at least one of them is a write.

Separate thread for dynamic analysis. For dynamic anal-
ysis, runtime monitoring and race detection require many
extra operations, and thus executing them on the driver

1

Procedure: Detecting data races by analyzing the runtime information
Input: access_set – Possible shared-variable accesses in F

con_access_set –Possible shared-variable accesses in Fset

1: race_access_set := ø;
2: foreach access in con_access_set do
3: if GetLockSet(access) != ø then
4: AddSet(access, race_access_set);
5: end if
6: end foreach
7: foreach access in race_access_set do
8: foreach con_access in con_access_set do
9: if (GetAccessVar(access) == GetAccessVar(con_access) and

10: GetLockSet(access) ∩ GetLockSet(con_access) == ø) then
11: if (GetAccessType(access) == WRITE or
12: GetAccessType(con_access) == WRITE) then
13: ReportDataRace(access, con_access);
14: end if
15: end if
16: end foreach
17: end foreach

Fig. 5. Data-race detection by analyzing the runtime information.

FILE: linux-5.4/drivers/.../iwlegacy/4965-mac.c
1641. int il4965_tx_skb(...) {

1843. if (...)
1844. txq->need_update = 1; //Covered
1845. else {
1846. wait_write_ptr = 1;
1847. txq->need_update = 0; //Missed
1848. }

1912. }

FILE: linux-5.4/drivers/.../broadcom/tg3.c
7915. static netdev_tx_t tg3_start_xmit(...) {

8065. tnapi->tx_buffers[entry].skb = skb; //Covered

8077. else if (skb_shinfo(skb)->nr_frags > 0) {

8096. tnapi->tx_buffers[entry].skb = NULL; //Missed

8111. }

8173. }

(a) Two data races in the iwl4965 driver (b) Two data races in the tg3 driver

Fig. 6. Example of a data race missed by dynamic analysis.

thread can introduce much runtime overhead. Moreover,
many of these extra operations require synchronization,
which can heavily affect driver concurrency. To solve these
problems, SDILP creates a separate thread to perform dy-
namic analysis. Specifically, the collected runtime infor-
mation is wrapped as a message, which is passed to the
message queue of this separate thread. This thread fetches
the messages from the message queue, to record runtime
information and perform data-race detection.

3.3.3 Offline Race Extension
In this phase, with the data races found by the dynamic
analysis, SDILP uses static lockset analysis of the driver code
after driver execution, to extend the race-detection results.

Figure 6(a) shows two real data races in the iwl4965
driver. One of them is found by the dynamic analysis but
the other one is missed. The dynamic analysis finds a data
race involving the variable txq->need_update on line
1844, as the code on this line is covered at runtime. As
shown in the code, this variable is also accessed on line
1847 with the same context (including the lockset and the
caller) as the found data race, and thus there should be
another data race on line 1847. However, the code on line
1847 is not covered at runtime, so dynamic analysis misses
this data race. In this example, the extra race is near the race
found by the dynamic analysis, but this is not always the
case. For example, Figure 6(b) shows another case in the tg3
driver. The dynamic analysis finds a data race on line 8065
at runtime, but misses another similar data race on line 8096
because the related code is not covered at runtime.

To detect such missed data races, according to the data
races found by dynamic analysis, SDILP performs a static
lockset analysis of the driver code, as shown in Figure 7.
For a variable access of a given data race, namely race access,
SDILP first identifies the function that includes this access
as caller. Then, SDILP performs intra-procedural and flow-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

1

Procedure: Extending race-detection results using static analysis
Input: race_access – The variable access of a given data race race

1: caller := GetCaller(race_access);
2: access_set := GetAccessSet(caller);
3: foreach access in access_ set do
4: if (GetAccessVar(access) == GetAccessVar (race_access) and
5: GetLockSet(access) == GetLockSet(race_access)) then
6: pair_race_access := GetRacePairAccess(race_access, race);
7: if (GetInstType(access) == WRITE or
8: GetInstType(pair_race access) == WRITE) then
9: ReportDataRace(access, pair_race_access);

10: end if
11: end if
12: end foreach

Fig. 7. Static analysis of the driver code to find data races.

sensitive analysis to collect the lockset of each variable
access in caller, and produces a resulting set access set.
After that, SDILP checks each item access in access set. If
the accessed variable and lockset of access are identical to
those of race access, namely the two accesses involve the
same variable and hold the same locks, then access may
also cause a data race. In this case, SDILP gets the variable
access paired with race access in the given data race, namely
paired race access, and reports a new data race of access and
paired race access, if at least one of them is a write operation.

3.4 Improvements over DILP
Compared to our previous approach DILP [1], SDILP in-
troduces static analysis and achieves two main benefits.
First, DILP monitors all variable accesses in the driver, and
thus it introduces much runtime overhead. To solve this
problem, SDILP performs a static taint analysis to identify
possible shared-variable accesses at compile time, and only
monitors these variable accesses at runtime. Thus, SDILP
can achieve better performance than DILP, which increases
the possibility of finding more data races in the given testing
time. Second, according to the data races found by dynamic
analysis, SDILP performs a static lockset analysis of the
driver code, to extend the results of data-race detection.
Thus, SDILP can find some data races missed by DILP.

4 EVALUATION

In this section, we evaluate SDILP on Linux device drivers
and compare it to existing race-detection approaches.

4.1 Experimental Setup
To validate the effectiveness of SDILP, we evaluate it on real
Linux device drivers. The tested device drivers are selected
according to three criteria: 1) they should be commonly used
in practice; 2) they should be within the driver classes in the
study in Section 2.2, which we have found to have many
data races caused by inconsistent locking discipline; 3) they
should run as kernel modules, so that we can enable SDILP
by installing the SDILP kernel module before installing the
driver. According to these criteria, we select 12 Linux device
drivers, including 6 Ethernet controller drivers, 3 wireless
controller drivers and 3 sound card drivers. Table 2 lists
some information about the tested drivers of Linux 5.4.

The experiment runs on a common Lenovo PC with four
Intel i7-3770@3.40G processors and 8GB physical memory.
The driver source code is compiled using Clang 9.0 and

TABLE 2
Tested device drivers

Class Driver Hardware devices LOC

Ethernet

e100 Intel 82559 Ethernet Controller 3.2K
dl2k ICPlus IP1000 Ethernet Controller 2.3K
8139too Realtek RTL8139 Ethernet Controller 2.7K
3c59x 3Com 3c905B Ethernet Controller 3.4K
e1000e Intel 82572EI Ethernet Controller 29.3K
tg3 Broadcom BCM5721 Ethernet Controller 21.8K

Wireless
iwl4965 Intel 4965AGN Wireless Controller 28.8K
b43 Broadcom BCM4322 Wireless Controller 56.6K
ath9k Atheros AR5418 Wireless Controller 88.2K

Sound
cmipci C-Media CM8738 Sound Card 3.4K
maestro3 ESS ES1988 Allegro-1 Sound Card 2.8K
ens1371 Ensoniq ES1371 Sound Card 2.9K

TABLE 3
Workloads of testing drivers

Class Workload description Commands

Ethernet Network configuration ifconfig, dhcp, nmcli, route
Data transmission ping, ssh, scp, ftp, wget, iperf

Wireless Network configuration iwconfig, dhcp, nmcli, route
Data transmission ping, ssh, scp, ftp, wget, iperf

Sound Sound playing aplay, mplayer
Sound recording arecord

GCC 6.5. We test each driver 5 times, due to the non-
determinism of driver concurrency. During each test, we
install a driver in the system, and run it with workloads
on 4 threads, and finally remove it. The workloads are
shown in Table 3, and each of them is executed with a 10-
second timeout. We select these workloads because they are
commonly used and related to the tested drivers [44], [45].
Note that the numbers used in the tests (such as 5 times and
4 threads) are randomly selected with no special purpose,
and they can be changed as needed.

To validate whether SDILP can find known data races,
we use it to test the 12 drivers in an old Linux version 3.3.1
(released in April 2012). To validate whether SDILP can find
new data races, we use it to test the 12 drivers in a newer
Linux version 5.4 (released in November 2019). To show
the improvements of SDILP over our previous approach
DILP [1], we evaluate both approaches on Linux 3.3.1 in
Sections 4.2 and 4.4. In Section 4.6.1, we also experimentally
compare SDILP to two state-of-the-art kernel race checkers,
namely KernelStrider [33] and KCSAN [34]). As we focus
on detecting data races not concurrency bugs, we consider
that both benign and harmful races are real races, as done
by many existing approaches [6], [14], [15], [46].

4.2 Detecting Data Races
Table 4 shows the results of data-race detection. The column
“Access site” shows the number of instrumented variable-
access sites in the driver LLVM bytecode; the column “Race”
shows the number of found data races. As SDILP uses both
dynamic and static lockset analyses to detect data races, the
column “Race” of SDILP also shows the number of data
races found by the two analyses. From Table 4, we find that:

1) SDILP drops around 42% of the variable-access sites
instrumented by DILP. Most of the dropped variable-access
sites are only related to local variables that are unlikely to be
shared by different threads, so they are useless for data-race
detection. However, DILP instruments all variable accesses
in the driver code, including these useless variable-access
sites. Thus, SDILP can help reduce the runtime overhead of
monitoring variable accesses during dynamic analysis.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 4
Race detection results.

Class Driver DILP (Linux 3.3.1) SDILP (Linux 3.3.1) SDILP (Linux 5.4)
Access site Race Access site Race (Dynamic+Static) Access site Race (Dynamic+Static)

Ethernet

e100 3092 2 2093 4 (1+3) 2127 16 (3+13)
dl2k 1826 2 1100 7 (4+3) 1174 8 (7+1)
8139too 1857 3 1204 3 (3+0) 1263 1 (1+0)
3c59x 3253 5 1831 16 (13+3) 1720 15 (12+3)
e1000e 18607 1 10509 37 (33+4) 11050 26 (22+4)
tg3 17013 0 10952 0 (0+0) 12310 11 (6+5)

Wireless
iwl4965 22436 0 12899 45 (37+8) 12300 27 (20+7)
b43 26126 0 15117 2 (1+1) 16912 5 (4+1)
ath9k 59903 0 32778 47 (24+23) 42706 4 (3+1)

Sound
cmipci 2744 0 1533 4 (2+2) 1570 4 (2+2)
maestro3 1615 0 951 0 (0+0) 993 0 (0+0)
ens1371 1871 0 1239 0 (0+0) 1273 0 (0+0)

Total 160343 13 92206 165 (118+47) 105398 117 (80+37)

FILE: linux-5.4/drivers/net/ethernet/intel/e100.c
847. static int e100_exec_cb(..., int (*cb_prepare)(...)) {

 ……
854. spin_lock_irqsave(...);

866. err = cb_prepare(...); // call a function pointer

900. spin_unlock_irqrestore(...);

903. }

1072. static in e100_configure(...) {

1123. if (nic->flags & multicast_all)

1160. }

1581. static void e100_set_multicast_list(...) {

1600. e100_exec_cb(..., e100_configure);

1602. }

1688. static void e100_watchdog(...) {

1730. if (...)
1731. nic->flags |= ich_10h_workaround; // Static analysis
1732. else
1733. nic->flags &= ~ich_10h_workaround; // Dynamic analysis

1737. }

Fig. 8. Two found data races in the e100 driver.

2) SDILP finds 165 and 117 data races in the tested
drivers of Linux 3.3.1 and 5.4, respectively. We manually
check these data races, and identify that all of them are real.
We also find that 64 of the data races in Linux 3.3.1 have
been fixed in Linux 5.4. Thus, SDILP can find known data
races. We have reported the data races found in Linux 5.4
to the related driver developers, and 50 of them have been
confirmed. We have not yet received a reply for the others.
Thus, SDILP can find new data races.

3) Among the data races found by SDILP, 47 of 165 in
Linux 3.3.1 and 37 of 117 in Linux 5.4 are found by the
static lockset analysis, because the variable accesses of these
data races are not covered by our test workloads at runtime
but have the same context as the variable accesses of a data
race found by dynamic analysis. These results show that the
static lockset analysis of SDILP is effective in finding data
races missed by dynamic analysis.

Figure 8 presents two data races found by SDILP in
the Linux 5.4 e100 Ethernet controller driver. The func-
tion e100_set_multicast_list calls e100_exec_cb
with a function pointer argument referencing e100_-
configure on line 1600. The function e100_exec_cb calls
spin_lock_irqsave to acquire a spinlock, and then calls
e100_configure via the function pointer argument on
line 866. The function e100_configure reads the variable
nic->flags in a branch condition on line 1123. Dur-
ing driver execution, the mentioned function call chain is
concurrently executed with that of the function e100_-

watchdog, in which the variable nic->flags is written on
line 1733 without lock protection. SDILP reports a data race
here. After driver execution, SDILP performs static lockset
analysis, and finds that nic->flags is also written on line
1731, while holding the same locks as the write operation on
line 1733. Thus, SDILP also reports a data race on line 1731.

4) For the tested drivers of Linux 3.3.1, SDILP finds all
the data races found by DILP, and it also finds 152 data races
missed by DILP for two reasons. First, SDILP uses a static
taint analysis to reduce the runtime overhead of dynamic
analysis, and thus it can more efficiently execute the test
workloads, which increases the probability of finding more
data races in a given testing time. This reason helps SDILP
find 106 data races missed by DILP. Second, SDILP uses
a static lockset analysis to detect data races missed by the
dynamic analysis. This reason helps SDILP find 46 data
races missed by DILP.

5) We check the 13 data races found by DILP in Linux
3.3.1, and find that 4 of them (2 in dl2k and 2 in 8139too)
have been fixed in Linux 5.4. Besides these 4 data races,
SDILP also finds 60 data races fixed in Linux 5.4 but missed
by DILP. Interestingly, according to the 4 fixed data races
found by DILP, SDILP’s static lockset analysis finds 3 ad-
ditional data races (in dl2k) by extending these data races.
These 3 data races are fixed in the same patch as those 4
data races in Linux 5.4.

6) Among the 47 races found by static lockset analysis
in Linux 3.3.1, 37 races are fixed in Linux 5.4. 25 of these
37 races are fixed in the same patches as 27 races found
by dynamic lockset analysis, and 12 remaining races are
fixed in other patches. Among the 37 races found by static
lockset analysis in Linux 5.4, 24 have been confirmed by
developers. 18 of the confirmed data races have been fixed.
All these 18 fixed races are fixed in the same patches as 20
races found by dynamic lockset analysis. Indeed, for each
tested driver, we reported all the data races found by SDILP
to the developers, without describing which data races are
found by dynamic or static lockest analysis. For this reason,
the developers confirmed or fixed these data races together,
without knowing how the data races were originally found.

Reviewing the data races found by SDILP, we find that:
1) Interrupt handling is a significant source of the found

data races. Specifically, 117 data races in Linux 3.3.1 and 66
data races in Linux 5.4 occur in interrupt handlers. Indeed,
developers may overlook the driver concurrency introduced
by interrupt handling, causing these data races.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

2) Many of the found data races involve function point-
ers in the concurrently-executed function-call chains. Specif-
ically, 39 data races in Linux 3.3.1 and 21 data races in Linux
5.4 have this property. The two data races shown in Figure 8
are such examples. Without exact runtime information, it
is often hard to correctly identify the set of functions ref-
erenced by a function-pointer call, making such data races
hard to find by statically checking the driver code.

3) All the found data races involve data structure fields.
An example is the raced variable nic->flags in Figure 8.
To share variables in different driver functions executed on
different threads, device drivers often wrap these variables
in specific data structures, and pass pointers to these data
structures as function arguments. Thus, device drivers often
access shared variables via data structure fields.

4.3 Impact of the Found Data Races

We estimate the impact of the found data races, from two
points of view. On the one hand, for control flow, if the
raced variable is in the branch condition (such as ”if” and
”while”), the related data race is identified to be harmful,
because it affects the control flow. On the other hand, for
data flow, if the raced variable is an array index or pointer-
access offset, the related data race is identified to be harmful,
because it affects the access to array element or pointer
at runtime, which can cause unexpected behaviors of the
driver. Among the 165 data races found in Linux 3.3.1, we
identify that 94 of them to be harmful, including the 64 data
races fixed in Linux 5.4; among the 117 data races found
in Linux 5.4, we identify that 65 of them can be harmful,
including the 50 data races confirmed by driver developers.

For the 94 harmful data races in Linux 3.3.1, 62 can
influence control flow and 32 can influence data flow; for the
65 harmful data races in Linux 5.4, 45 can influence control
flow and 20 can influence data flow. In our experience,
developers are more likely to fix such harmful data races, as
they have high impact on data flow and control flow, which
can cause reliability and security problems at runtime. As
for benign data races, developers tend not to handle or fix
benign data races, for two reasons. First, their impact on
data flow and control flow is low, and thus race conditions
are allowed at runtime. Second, adding locks to fix benign
data races may also degrade program performance.

Figure 9 shows a harmful data race found by SDILP
in the Linux 5.4 cmipci sound card driver. During our
runtime testing, the functions snd_cmipci_pcm_trigger
and snd_cmipci_interrupt are concurrently executed.
SDILP detects that the write of rec->running on line 897
and the read of cm->channel[0].running on line 1454
access the same data, but the write is protected by the
spinlock cm->reg_lock while the read is not, and thus
a data race can occur. The write on line 897 is performed
when the sound is being stopped, and the read on line
1454 is performed when the interrupt is handled. Thus,
due to this data race, when the sound is being stopped
and the interrupt is handled at the same time, the variable
cm->channel[0].running can be non-zero, and thus the
function snd_pcm_period_elapsed on line 1455 can be
called to update the PCM (Pulse Code Modulation) status
and sound card buffer. However, in fact, when the sound is

FILE: linux-3.18/drivers/net/wireless/rtlwifi/rtl8723ae/dm.c
829. void rtl8723e_dm_watchdog(...) {

 ……
+++. spin_lock(&rtlpriv->locks.rf_ps_lock);
845. if (... && (!ppsc->rfchange_inprogress)) {

855. }
+++. spin_unlock(&rtlpriv->locks.rf_ps_lock);
856. if (rtlpriv->btcoexist.init_set)
857. rtl_write_byte(...);
858. }

FILE: linux-5.4/sound/pci/cmipci.c
 874. static int snd_cmipci_pcm_trigger {

 ……
 885. spin_lock(&cm->reg_lock);

 896. case SNDRV_PCM_TRIGGER_STOP: // Stop the sound
897. rec->running = 0;

 920. spin_unlock(&cm->reg_lock);
 921. return result;
 922. }

1430. static irqreturn_t snd_cmipci_interrupt(...) {

1454. if ((status & CM_CHINT0) && cm->channel[0].running)
1455. snd_pcm_period_elapsed(...); // Update the PCM status

1460. }

Fig. 9. A harmful data race in the cmipci driver.

TABLE 5
Performance results.

Driver Original DILP SDILP
Throughput CPU Throughput CPU Throughput CPU

e100 94.1Mb/s 1.5% 7.5Mb/s 12.7% 45.5Mb/s 9.5%
dl2k 94.0Mb/s 2.2% 12.3Mb/s 10.4% 85.5Mb/s 7.8%
8139too 90.6Mb/s 1.4% 43.6Mb/s 8.5% 75.3Mb/s 3.9%
3c59x 94.1Mb/s 1.7% 16.5Mb/s 16.4% 36.1Mb/s 13.5%
e1000e 93.9Mb/s 1.3% 7.8Mb/s 10.9% 46.1Mb/s 8.6%
tg3 94.1Mb/s 1.3% 24.7Mb/s 11.5% 83.1Mb/s 11.1%
iwl4965 13.5Mb/s 1.7% 1.2Mb/s 12.1% 8.7Mb/s 10.3%
b43 12.6Mb/s 1.6% 2.2Mb/s 12.8% 8.1Mb/s 10.8%
ath9k 13.4Mb/s 1.7% 1.5Mb/s 12.7% 7.4Mb/s 9.5%
cmipci - 0.5% - 1.7% - 1.0%
maestro3 - 0.7% - 3.1% - 1.9%
ens1371 - 0.7% - 3.5% - 1.8%

not played, the PCM status and sound card buffer should
not be updated. Otherwise, if the sound is started again, the
PCM status and sound card buffer may be incorrect, which
can cause the sound to be played abnormally. The related
driver developer also confirmed the harmfulness of this race
and said it could damage the sound card’s functionality.

At present, we manually estimate the impact of the data
races found by SDILP. Several existing approaches [47]–
[49] can automatically classify data races by their impact,
through analyzing the source code. These approaches are
orthogonal to SDILP, and they can be used to reduce the
manual work of identifying harmful races found by SDILP.

4.4 Runtime Overhead

We measure the runtime overhead introduced by SDILP, to
check whether it can significantly impact driver execution.
To quantify the runtime overhead, we use common bench-
marks to measure the performance of the original drivers
and the drivers instrumented by SDILP. Moreover, to quan-
tify the value of SDILP’s static analysis used for reducing
runtime overhead, we also measure the performance of the
drivers instrumented by DILP.

For the Ethernet controller drivers and wireless con-
troller drivers, we use netperf [50] to measure the network
throughput and CPU utilization when sending 128-byte
TCP bulk data blocks. For sound card drivers, we measure
the CPU utilization when playing and recording a wave file
for thirty seconds. We test each device driver 5 times, and
calculate the average value of the network throughput and
CPU utilization. Table 5 shows the results. We find that:

1) The runtime overhead introduced by SDILP is 3.7x on
average. Specifically, the network throughput of the Ether-
net controller and wireless controller drivers is decreased by
1/1.7 (the overhead is 1.7x), and the CPU utilization of all

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

1 2 3 4 5 6
30 75 105 117 118 118

1 2 3 4 5 6
48 80 98 117 125 130

Threads

Test times

0

30

60

90

120

150

1 2 3 4 5 6
Threads

D
at

a
ra

ce
s

0

30

60

90

120

150

1 2 3 4 5 6
Test times

D
at

a
ra

ce
s

(a) Changing threads (b) Changing test times

Fig. 10. Result variation for the numbers of workload threads and tests.

tested drivers is increased by 5.3x. This runtime overhead is
lower than many previous dynamic-analysis approaches to
detecting data races in kernel-level programs, such as Intel’s
Thread Checker [51] that introduces 200x runtime overhead
and Eraser [32] that introduces 10x-30x runtime overhead.

2) SDILP achieves lower runtime overhead than DILP.
Specifically, for DILP, the network throughput of the Ether-
net controller and wireless controller drivers is decreased by
1/7.5 (the overhead is 7.5x), and the CPU utilization of all
tested drivers is increased by 6.8x. The runtime overhead
introduced by DILP is 7.2x on average, which is about
double the runtime overhead introduced by SDILP. Dur-
ing driver execution, DILP monitors all variable accesses
at runtime, while SDILP only monitors possible shared-
variable accesses identified by static analysis as involving
global variables or pointer-typed function arguments. Thus,
SDILP monitors much fewer variable accesses than DILP,
which greatly reduces the runtime overhead.

4.5 Result Variation
As described in Section 4.1, we test each driver 5 times
and run each workload with 4 threads. To check how these
numbers affect race-detection results of SDILP, we perform
two experiments. First, we test each driver 1-6 times, and
still run each workload with 4 threads. Second, we still test
each driver 5 times, and run each workload with 1-6 threads.
Figure 10 shows the results for the 12 drivers of Linux 5.4.

We find that increasing the numbers of workload threads
or tests enables finding more data races, as more thread
interleavings can be covered. However, such benefit be-
comes smaller as the numbers of workload threads or tests
increase, because fewer and fewer new thread interleavings
are covered. For this reason, blindly increasing the numbers
of workload threads and tests cannot always obviously ben-
efit data-race detection in real-world experiments. Besides,
we note that SDILP still finds 30 data races when each
workload is run with just one thread. Indeed, even a single-
thread workload can involve multiple kernel threads and
trigger driver interrupt handling, which can in turn cause
data races in drivers.

4.6 Comparison to Existing Approaches
In this subsection, we focus on comparing SDILP to existing
race-detection approaches that can test Linux device drivers.

4.6.1 KernelStrider and KCSAN
KernelStrider [33] is an open-source data-race checker used
for Linux kernel modules. Its race-detection strategy is
similar to that of SDILP, namely first intercepting variable
accesses to collect runtime information during driver execu-
tion and then detecting data races according to the collected
information with a lockset analysis. Note that different from

TABLE 6
Comparison results of data-race detection

Driver
Linux 3.3.1 Linux 5.4

KernelStrider
(fixed/real/all)

SDILP
(fixed/real/all)

KCSAN
(confirmed/real/all)

SDILP
(confirmed/real/all)

e100 0/0/6 0/4/4 1/1/1 16/16/16
dl2k 1/1/15 7/7/7 2/2/2 8/8/8
8139too 0/0/4 3/3/3 0/0/0 1/1/1
3c59x 0/1/16 3/16/16 0/0/0 0/15/15
e1000e 3/3/85 12/37/37 1/1/1 7/26/26
tg3 0/0/47 0/0/0 1/1/1 5/11/11
Total 4/5/173 25/67/67 5/5/5 37/77/77

TABLE 7
Comparison results of performance.

Driver Original KernelStrider KCSAN SDILP
Throughput CPU Throughput CPU Throughput CPU Throughput CPU

e100 94.1Mb/s 1.5% 94.0Mb/s 3.5% 80.3Mb/s 6.3% 45.5Mb/s 9.5%
dl2k 94.0Mb/s 2.2% 94.0Mb/s 5.3% 90.5Mb/s 5.8% 85.5Mb/s 7.8%
8139too 90.6Mb/s 1.4% 90.5Mb/s 2.8% 79.6Mb/s 3.2% 75.3Mb/s 3.9%
3c59x 94.1Mb/s 1.7% 94.1Mb/s 5.2% 75.2Mb/s 6.3% 36.1Mb/s 13.5%
e1000e 93.9Mb/s 1.3% 93.9Mb/s 3.5% 77.5Mb/s 4.6% 46.1Mb/s 8.6%
tg3 94.1Mb/s 1.3% 94.0Mb/s 3.8% 85.5Mb/s 5.2% 83.1Mb/s 11.1%

SDILP, KernelStrider only performs lockset analysis after
program execution. In design, SDILP has four important
advantages compared to KernelStrider:

1) KernelStrider relies on static information about kernel
interfaces, such as the function type and the function name,
that is hard-coded in the implementation of KernelStrider.
However, this information is specific to each kernel version.
The most recent Linux kernel version that KernelStrider
supports is Linux 4.5.2 We have tried to run KernelStrider on
the drivers we have tested in Linux 5.4, but it fails because
the static information of many kernel interfaces is outdated.
SDILP does not rely on hard-coded information. Instead,
it automatically analyzes the driver code to perform code
instrumentation. Thus, SDILP can conveniently test device
drivers of different kernel versions.

2) KernelStrider does not identify which driver functions
are concurrently executed. Thus, it may report false data
races when the involved driver functions are never con-
currently executed. SDILP monitors the execution of driver
functions, and identifies concurrently executed functions to
reduce false positives in race detection.

3) KernelStrider uses the interrupt status to maintain
function call chains, but does not use this status to maintain
locksets. Thus, the locksets maintained by KernelStrider
may be incorrect when interrupts occur. SDILP uses the
interrupt status to maintain both function call chains and
locksets, which can reduce the possibility of reporting false
data races involving interrupt handling.

4) KernelStrider relies only on dynamic analysis. Besides
dynamic analysis, SDILP also uses a static lockset analysis
to extend the race-detection results of dynamic analysis.

With some manual configuration, we have successfully
run KernelStrider to test the six Ethernet controller drivers
of Linux 3.3.1 that are tested by SDILP. The remaining six
drivers are not Ethernet controller drivers, and supporting
them would require extra manual work. These six drivers
are tested with the same workloads (shown in Table 3) as
for SDILP. Table 6 shows the results of data-race detection.

2. https://github.com/euspectre/kernel-strider/issues/6

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

We find that most of the data races found by Kernel-
Strider are false, either because the related driver functions
are never concurrently executed, or because the maintained
locksets are incorrect when interrupts occur. On the one
hand, among the 5 real data races found by KernelStrider,
one is also found by SDILP. The other 4 data races are
missed by SDILP, because the involved variable accesses are
not protected by any lock, namely they are not caused by
inconsistent locking discipline. On the other hand, 66 real
data races found by SDILP are missed by KernelStrider.
We infer that KernelStrider misses these races because it
maintains incorrect locksets at runtime, especially when
analyzing interrupt handling functions. In summary, SDILP
achieves a lower false positive rate than KernelStrider, and
finds many data races missed by KernelStrider.

Among the 5 real data races found by KernelStrider, 4
have been fixed in Linux 5.4, including one found by SDILP;
among the 67 real data races found by SDILP, 25 have been
fixed in Linux 5.4, including 24 missed by KernelStrider.

KCSAN [34] is an open-source data-race checker that has
been integrated in the Linux kernel since October 2019.
While SDILP uses lockset analysis, KCSAN uses code break-
points and a sampling strategy to monitor memory accesses
and catch data races at runtime. It is similar to DataCol-
lider [30]. We have successfully run KCSAN to test the six
Ethernet controller drivers in Table 6 in Linux 5.4, as KCSAN
does not support old kernel versions like Linux 3.3.1. These
six drivers are tested with the same workloads (shown in
Table 3) as for SDILP.

We find that the 5 real data races found by KCSAN are all
found by SDILP, and SDILP finds 72 real data races missed
by KCSAN. Indeed, KCSAN uses hardware breakpoints to
inspect memory-access instruction pairs, but catching two
concurrently-executed instructions that have race conditions
is difficult in practice, due to the non-determinism of thread
interleavings. By using dynamic and static lockset analysis,
SDILP extends the race-detection scope to all the memory
accesses in concurrently-executed functions, which can find
many data races missed by KCSAN.

Besides, the 5 real data races found by KCSAN are all
confirmed by driver developers; among the 77 real data
races found by SDILP, 37 of them have been fixed in Linux
5.4, including the 5 found by KCSAN.

Runtime overhead. Identical to Section 4.4, we measure the
network throughput and CPU utilization when sending 128-
byte TCP bulk data blocks, to calculate runtime overhead.
Table 7 shows the detailed results.

We find that SDILP introduces higher runtime overhead
than KernelStrider and KCSAN. Specifically, KernelStrider
hardly decreases the network throughput, and increases the
CPU utilization by 2.6x, so its average runtime overhead
is 1.3x; KCSAN decreases the network throughput by 1.2x,
and increases the CPU utilization by 3.4x, so its average run-
time overhead is 2.3x; SDILP decreases network throughput
by 1.7x, and increases the CPU utilization by 5.9x, so its
average runtime overhead is 3.8x. Indeed, compared to Ker-
nelStrider and KCSAN, SDILP performs more operations
during execution, such as collecting concurrently-executed
functions, maintaining interrupt status and performing on-
line lockset analysis.

Usability analysis. KernelStrider relies on static information
about kernel interfaces, which is specific to each kernel
version. Namely, the user needs to manually provide such
information in KernelStrider when testing drivers in a new
kernel version. By default, KCSAN is disabled in the Linux
kernel, and thus the user needs to manually re-compile
the kernel source code and open the kernel debugging op-
tion. Different from KernelStrider and KCSAN, SDILP can
automatically run in different kernel versions without the
need to re-compile the kernel source code. Thus, we believe
that SDILP should be easier to use than KernelStrider and
KCSAN in actual driver testing.

4.6.2 Other Approaches

Similar to SDILP, several existing approaches [37], [38] also
integrate static analysis and dynamic analysis for data-
race detection. Specifically, these approaches first perform
static analysis to identify and instrument possible raced
instruction pairs in the code, and then perform dynamic
analysis to detect data races by monitoring these possible
raced instruction pairs during execution. SDILP has two
main differences from these approaches:

1) Due to the inaccuracy of alias analysis, their static
analysis can miss real raced instruction pairs involving
complex alias relationships, causing related data races to
be missed by dynamic analysis. By contrast, the static taint
analysis of SDILP over-approximates the set of possible
shared-variable accesses, without taking into account alias
relationships, and thus we believe that SDILP could find
data races missed by these approaches. However, due to
the differences in the static analyses, SDILP instruments
and monitors more variable accesses than these approaches,
causing SDILP to introduce more runtime overhead in dy-
namic analysis.

2) SDILP also uses a static lockset analysis to extend the
race-detection results of dynamic analysis, which is new for
these approaches.

As the approach of Choi et al. [37] is not open-source,
we cannot experimentally compare to it. As for Razzer [38],
we successfully run it with its source code [52] to test the six
drivers of Linux 5.4 in Table 7 for 24 hours. Razzer only finds
memory bugs and warnings caused by race conditions, and
it has no race checker to find data races. In the experiments,
Razzer finds no race bugs in these drivers.

4.6.3 False Negative Analysis

SDILP can still miss some real data races found by several
existing race-detection approaches, for two reasons. First,
SDILP only detects data races caused by inconsistent locking
discipline, and thus if the raced variable accesses are not
protected by any lock, SDILP cannot find related data races.
This is why SDILP misses four real data races found by
KernelStrider [33], as described in Section 4.6.1. Second,
SDILP can only find data races whose caller functions are
concurrently executed at runtime. In comparison, Eraser [32]
does not have this requirement, and thus it can find data
races whose caller functions are not observed to be concur-
rently executed at runtime. Eraser, however, has many more
false positives than SDILP due to no concurrency checking
of variable accesses.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

5 DISCUSSION

In this section, we discuss the threats to validity, race-
detection coveage and generality of SDILP.

5.1 Threats to Validity
The main threats to internal validity are about the lock
synchronization mechanism and concurrency analysis of
SDILP. Firstly, because SDILP is a lockset analysis approach,
it cannot detect data races involving other synchronization
mechanisms, such as memory barriers. Secondly, SDILP
requires an accurate lockset analysis to check whether each
pair of instructions in the two functions can be concurrently
executed. Thus, if any lock primitive is missed or the lockset
analysis is inaccurate, SDILP may find false data races.
Thirdly, SDILP only detects data races caused by inconsis-
tent locking discipline, and it cannot detect other patterns of
data races, such as those whose involved variable accesses
are not protected by any lock.

The main threats to external validity are about runtime
overhead and code coverage. Firstly, though SDILP uses
some techniques to reduce runtime overhead, it still intro-
duces 3.7x runtime overhead on average in our evaluation.
This runtime overhead may affect driver concurrency dur-
ing testing, and thus SDILP may miss some real data races.
Secondly, because SDILP needs to actually run the drivers,
its code coverage heavily relies on the tested workloads and
driver configuration. In the experiment, we only use com-
mon workloads and specific configurations to test drivers in
normal cases. Thus, only some normal-execution code paths
are covered. However, many infrequently-executed code
paths (such as error handling code paths) are not covered,
and thus some real data races may be missed, though SDILP
uses a static lockset analysis to extend race-detection results.

5.2 Race-Detection Coverage
Despite some use of static analysis, SDILP is in essence a
dynamic analysis approach, so it requires associated hard-
ware devices to actually run the tested drivers and requires
sufficient test workloads to cover concurrently executed
code. These requirements are often hard to satisfy in prac-
tice. Moreover, the static lockset analysis of SDILP is intra-
procedural, and it just extends the race-detection results of
dynamic analysis, without analyzing the whole driver code,
and thus real data races can be still missed. We believe that
exploiting software fault injection (SFI) [53] and fuzzing [54]
to test drivers with virtual devices [55] can help to find more
data races without the associated hardware devices.

Besides, we believe that SDILP can detect general data
races, if we drop the constraint that one of the two variable
accesses is protected by at least one lock. This constraint,
however, increases the confidence in the results, as it can
reflect a strong evidence that developers understand that a
concurrent access is possible. If this constraint is dropped,
SDILP may report many false positives.

5.3 Generality
In fact, besides device drivers, we find that many of re-
ported data races in other programs are also caused by
inconsistent locking discipline. For example, we select the

accepted race-fixing patches of three common programs
(FFmpeg libraries [56], QEMU emulator [57] and Linux
NFS filesystem [58]) in the Patchwork project from April
2015 to April 2018, by searching the patch titles. We get 80
such patches, and we find that 27 of these patches involve
inconsistent locking discipline, resulting in a percentage
of 34%. This percentage is close to that of device drivers
(39% shown in Section 2.2). Thus, besides device drivers,
we believe that SDILP is applicable to other multi-threaded
programs, because they also have many data races caused
by inconsistent locking discipline.

6 RELATED WORK

In this section, we introduce the related work and discuss
the differences between SDILP and existing approaches.

6.1 Dynamic Analysis
Many approaches use dynamic analysis to detect data races
with runtime information. They are based on the happens-
before relation [20], sampling [59] or a lockset analysis [32].

Happens-before-based approaches [24], [60]–[62] track
memory addresses and synchronization events to infer
the temporal happens-before relation between two events.
When two conflicting memory accesses α and β involve the
same memory location, and neither α happens before β nor
β happens before α, a data race may occur. Djit+ [24] uses
vector time frames to track each shared-variable access, and
checks whether this access has the happens-before relation
with prior accesses to the shared variable. These approaches
report no false positives, but they often miss many real data
races, and introduce much overhead due to tracking and
inferring the happens-before relation at runtime. To the best
of our best knowledge, no happens-before-based approach
has been used to test device drivers.

Sampling-based approaches [6], [8], [15], [30], [31], [34]
monitor variable accesses at intervals instead of tracking all
variable accesses, and thus they can achieve better perfor-
mance than happens-before-based approaches. LiteRace [15]
is an effective sampling-based approach to detect data races
in user-level applications. It uses adaptive sampling to
track infrequently accessed regions in the program, and
detects related data races. DataCollider [30] is a well-known
sampling-based approach to detect data races in the Win-
dows kernel. It randomly samples a small set of memory
accesses. To increase the possibility of capturing concurrent
accesses to the same memory addresses, it delays the current
thread for a short time. It uses hardware breakpoints to set
data breakpoints at the access location to trap any second
access during the delay; such a second access indicates a
real race. However, these approaches may miss many real
races when the sampling frequency is low and have much
runtime overhead when the sampling frequency is high.

Lockset analysis approaches [13], [16], [32], [33], [63]–[65]
maintain locksets of shared variables and running threads,
and detect data races by computing the intersection between
the locksets of each accessed shared variable and its running
thread. However, previous lockset analysis approaches of-
ten report many false positives, because they cannot ensure
that the shared variables involved in the reported data races
are actually concurrently accessed at runtime.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Our approach SDILP is based on lockset analysis, but
it includes several novel features to reduce false positives.
First, SDILP identifies the functions that are concurrently
executed, and only performs lockset analysis of the memory
accesses occurring in these functions. Second, specific to de-
vice drivers, SDILP considers interrupt handling, to reduce
the possibility of reporting false races related to interrupts.
Besides, SDILP introduces static analysis to reduce the run-
time overhead of monitoring variable accesses and to detect
more data races according to the dynamic-analysis results.

6.2 Static Analysis
Many approaches use static analysis to detect concurrency
bugs without actually running the program. They are based
on flow-insensitive type-based analysis (such as [66]–[68]) or
flow-sensitive lockset analysis (such as [25], [35], [69]). For
example, Flanagan et al. [66] propose a type-based analysis
approach for Java programs. This approach introduces type
annotations to capture synchronization patterns, and detects
data races according to these patterns. RacerX [25] is a well-
known static lockset analysis approach that detects data
races and deadlocks in OS kernel code. It first extracts
control flow graphs and variable information from source
files. Then, it exploits an inter-procedual, flow-sensitive and
context-sensitive analysis to compute locksets in code paths
and detect data races. Finally, it post-processes and ranks
the results to generate data-race reports. DCUAF [23] is a
static lockset analysis approach to detecting concurrency
use-after-free bugs in Linux device drivers. It first analyzes
each driver’s code, and then statistically analyzes the results
of all drivers to statically extract the pairs of driver interface
functions that may be concurrently executed. With these
function pairs, it performs a static summary-based lockset
analysis to detect concurrency use-after-free bugs. Besides,
some static approaches (such as RacerD [70] and SharC [71])
rely on the user’s annotations to indicate concurrent code
points and shared variables for data-race detection.

Static analysis can conveniently detect data races with-
out running the tested programs, but it often reports many
false positives due to lacking exact runtime information
about concurrent execution. Even so, static analysis can help
dynamic analysis to reduce runtime overhead and extend
the race-detection results. SDILP uses this idea and has
shown promising results.

6.3 Hybrid Static-Dynamic Analysis
Similar to SDILP, several approaches [37], [38] also integrate
static analysis and dynamic analysis for data-race detection.
They first perform static analysis to identify and instru-
ment possible raced instruction pairs in the code, and then
perform dynamic analysis to detect data races by moni-
toring these possible raced instruction pairs. The biggest
difference between SDILP and existing hybrid approaches
is that SDILP uses a static lockset analysis to extend the
race-detection results of dynamic analysis, which is new for
existing hybrid approaches. Moreover, SDILP and existing
hybrid approaches use different static analyses to reduce
the set of instructions monitored during dynamic analysis.
Existing hybrid approaches perform static analysis to iden-
tify and instrument possible raced instruction pairs, while

SDILP performs taint analysis to identify and instrument
possible shared-variable accesses. The static analysis of ex-
isting hybrid approaches can identify fewer instructions
as relevant than SDILP’s taint analysis, and thus existing
hybrid approaches can achieve less runtime overhead for
dynamic analysis. However, alias analysis of concurrent
code is much more complex and less accurate than taint
analysis of sequential code [19], and thus existing hybrid
approaches may miss some real raced instruction pairs
involving complex alias relationships, causing related data
races to be missed by dynamic analysis. Because the goal
of SDILP’s taint analysis is to identify shared-variable ac-
cesses from sequential code, not to identify possible raced
instruction pairs from concurrent code, using SDILP’s taint
analysis in existing hybrid approaches may not be suitable.

6.4 Symbolic Execution
Several approaches [27], [46], [72], [73] use symbolic execu-
tion to detect data races in device drivers. Symbolic execu-
tion uses a symbolic value to replace the concrete value of a
variable, and explores code paths by recording and solving
path constraints. When exploring code paths, symbolic exe-
cution can perform a lockset analysis and detect data races.
WHOOP [73] is a symbolic-execution based approach to
detecting data races in drivers. It uses over-approximation
and a symbolic pairwise lockset analysis to attempt to prove
a driver race-free. It also uses some optimizations based on
device-driver-domain knowledge to reduce the amount of
analyzed memory regions.

Symbolic execution can achieve high code coverage and
accurately detect data races. However, solving path con-
straints and exploring paths are often time-consuming when
analyzing large and complex driver code.

7 CONCLUSION

In device drivers, many data races are caused by a com-
mon pattern that we call inconsistent locking discipline. To
detect such data races, we propose a hybrid static-dynamic
analysis approach, named SDILP. It uses dynamic analysis
to monitor driver execution and detect data races, and uses
static analysis to reduce runtime overhead and extend the
race-detection results of dynamic analysis. We evaluated
SDILP on 12 Linux device drivers and found 117 new real
data races. 50 of them have been confirmed by driver de-
velopers. Compared to our previous approach DILP, SDILP
achieves lower runtime overhead and finds more data races.
Our results show that static analysis can indeed enhance
dynamic analysis in data-race detection.

SDILP can be improved in some aspects. First, because
SDILP needs to actually run the drivers, it may miss some
driver code and related data races that are not covered by
the test suite. To address this limitation, we plan to introduce
software fault injection and fuzzing techniques to improve
code coverage and detect more data races. Second, besides
data races caused by inconsistent locking discipline, we
plan to improve SDILP to detect other kinds of concurrency
problems, such as atomicity violations and concurrency use-
after-free bugs. Finally, besides Linux device drivers, we
plan to port SDILP to other operating systems to test their
drivers, and to apply SDILP to user-level applications.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful advice
on the paper. We also thank the Linux driver developers
who gave helpful feedback on our race reports. This work
was supported by the National Natural Science Foundation
of China under Project 62002195.

REFERENCES

[1] Q.-L. Chen, J.-J. Bai, Z.-M. Jiang, J. Lawall, and S.-M. Hu, “De-
tecting data races caused by inconsistent lock protection in de-
vice drivers,” in Proceedings of the 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2019, pp.
366–376.

[2] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: taming device
drivers,” in Proceedings of the 4th European Conference on Computer
Systems (EuroSys), 2009, pp. 275–288.

[3] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug charac-
teristics in open source software,” Empirical Software Engineering,
vol. 19, no. 6, pp. 1665–1705, 2014.

[4] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug character-
istics,” in Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2008, pp. 329–339.

[5] “Data race,” https://software.intel.com/en-us/inspector-user-
guide-linux-data-race.

[6] Y. Cai, J. Zhang, L. Cao, and J. Liu, “A deployable sampling strat-
egy for data race detection,” in Proceedings of the 2016 International
Symposium on Foundations of Software Engineering (FSE), 2016, pp.
810–821.

[7] P. Fonseca, C. Li, and R. Rodrigues, “Finding complex concurrency
bugs in large multi-threaded applications,” in Proceedings of the 6th
European Conference on Computer Systems (EuroSys), 2011, pp. 215–
228.

[8] M. D. Bond, K. E. Coons, and K. S. McKinley, “PACER: propor-
tional detection of data races,” in Proceedings of the 31st International
Conference on Programming Language Design and Implementation
(PLDI), 2010, pp. 255–268.

[9] S. Lu, S. Park, and Y. Zhou, “Detecting concurrency bugs from the
perspectives of synchronization intentions,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), no. 6, pp. 1060–1072, 2011.

[10] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection
for Java,” in Proceedings of the 27th International Conference on
Programming Language Design and Implementation (PLDI), 2006, pp.
308–319.

[11] S. Lu, S. Park, and Y. Zhou, “Finding atomicity-violation bugs
through unserializable interleaving testing,” IEEE Transactions on
Software Engineering (TSE), no. 4, pp. 844–860, 2012.

[12] X. Xie, J. Xue, and J. Zhang, “Acculock: accurate and efficient
detection of data races,” Software: Practice and Experience (SPE),
vol. 43, no. 5, pp. 543–576, 2013.

[13] C. Von Praun and T. R. Gross, “Object race detection,” in Proceed-
ings of the 16th International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2001, pp. 70–
82.

[14] C. Flanagan and S. N. Freund, “FastTrack: efficient and precise
dynamic race detection,” in Proceedings of the 30th International
Conference on Programming Language Design and Implementation
(PLDI), 2009, pp. 121–133.

[15] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: effec-
tive sampling for lightweight data-race detection,” in Proceedings
of the 30th International Conference on Programming Language Design
and Implementation (PLDI), 2009, pp. 134–143.

[16] P. Zhou, R. Teodorescu, and Y. Zhou, “HARD: hardware-assisted
lockset-based race detection,” in Proceedings of the 13th International
Symposium on High Performance Computer Architecture (HPCA),
2007, pp. 121–132.

[17] “Helgrind: a thread error detector,” https://valgrind.org/docs/
manual/hg-manual.html.

[18] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scal-
able and precise dynamic datarace detection for structured par-
allelism,” in Proceedings of the 33rd International Conference on
Programming Language Design and Implementation (PLDI), 2012, pp.
531–542.

[19] Y. Sui, P. Di, and J. Xue, “Sparse flow-sensitive pointer analysis for
multithreaded programs,” in Proceedings of the 2016 International
Symposium on Code Generation and Optimization (CGO), 2016, pp.
160–170.

[20] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7, pp.
558–565, 1978.

[21] L. Ryzhyk, Y. Zhu, and G. Heiser, “The case for active device
drivers,” in Proceedings of the 1st Asia-Pacific Workshop on Systems
(APSys), 2010, pp. 25–30.

[22] J.-J. Bai, Y.-P. Wang, and S.-M. Hu, “AutoPA: automatically gen-
erating active driver from original passive driver code,” in Pro-
ceedings of the 2018 International Symposium on Code Generation and
Optimization (CGO), 2018, pp. 288–299.

[23] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static anal-
ysis of concurrency use-after-free bugs in Linux device drivers,” in
Proceedings of the 2019 USENIX Annual Technical Conference, 2019,
pp. 255–268.

[24] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race
detection in multithreaded C++ programs,” in Proceedings of the
9th International Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2003, pp. 179–190.

[25] D. Engler and K. Ashcraft, “RacerX: effective, static detection of
race conditions and deadlocks,” in Proceedings of the 19th Interna-
tional Symposium on Operating Systems Principles (SOSP), 2003, pp.
237–252.

[26] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta, “Fast and
accurate static data-race detection for concurrent programs,” in
Proceedings of the 19th International Conference on Computer Aided
Verification (CAV), 2007, pp. 226–239.

[27] V. Vojdani, K. Apinis, V. Rõtov, H. Seidl, V. Vene, and R. Vogler,
“Static race detection for device drivers: the Goblint approach,” in
Proceedings of the 31st International Conference on Automated Software
Engineering (ASE), 2016, pp. 391–402.

[28] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang, “Static data race
detection for concurrent programs with asynchronous calls,” in
Proceedings of the 2009 International Symposium on Foundations of
Software Engineering (FSE), 2009, pp. 13–22.

[29] T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher,
“Model checking concurrent Linux device drivers,” in Proceedings
of the 22nd International Conference on Automated Software Engineer-
ing (ASE), 2007, pp. 501–504.

[30] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effec-
tive data-race detection for the kernel.” in Proceedings of the 9th
International Conference on Operating Systems Design and Implemen-
tation (OSDI), 2010, pp. 151–162.

[31] Y. Jiang, Y. Yang, T. Xiao, T. Sheng, and W. Chen, “DRDDR: a
lightweight method to detect data races in Linux kernel,” The
Journal of Supercomputing, vol. 72, no. 4, pp. 1645–1659, 2016.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson, “Eraser: a dynamic data race detector for multithreaded
programs,” ACM Transactions on Computer Systems (TOCS), vol. 15,
no. 4, pp. 391–411, 1997.

[33] “KernelStrider: detecting data races in Linux kernel modules,”
https://github.com/euspectre/kernel-strider.

[34] “KCSAN: concurrency sanitizer for the Linux kernel,”
https://github.com/google/ktsan/wiki/KCSAN.

[35] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: context-
sensitive correlation analysis for race detection,” in Proceedings of
the 27th International Conference on Programming Language Design
and Implementation (PLDI), 2006, pp. 320–331.

[36] “Clang compiler,” http://clang.llvm.org/.
[37] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and

M. Sridharan, “Efficient and precise datarace detection for mul-
tithreaded object-oriented programs,” in Proceedings of the 23rd
International Conference on Programming Language Design and Im-
plementation (PLDI), 2002, pp. 258–269.

[38] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
finding kernel race bugs through fuzzing,” in Proceedings of the
2019 IEEE Symposium on Security and Privacy, 2019, pp. 754–768.

[39] “Patchwork for Linux kernel,” https://patchwork.ozlabs.org/,
https://patchwork.kernel.org/, https://patchwork.linuxtv.org/.

[40] A. Kadav and M. M. Swift, “Understanding modern device
drivers,” in Proceedings of the 17th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2012, pp. 87–98.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[41] A. Lochmann, H. Schirmeier, H. Borghorst, and O. Spinczyk,
“LockDoc: trace-based analysis of locking in the Linux kernel,”
in Proceedings of the 14th European Conference on Computer Systems
(EuroSys), 2019, pp. 1–15.

[42] H. Wang, J. Zhai, X. Tang, B. Yu, X. Ma, and W. Chen, “Spindle:
informed memory access monitoring,” in Proceedings of the 2018
USENIX Annual Technical Conference, 2018, pp. 561–574.

[43] “Linux kernel documents about locking,” https://docs.kernel.
org/locking/.

[44] K. Cong, L. Lei, Z. Yang, and F. Xie, “Automatic fault injection for
driver robustness testing,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA), 2015, pp. 361–
372.

[45] J.-J. Bai, Y.-P. Wang, and S.-M. Hu, “Automated and reliable
resource release in device drivers based on dynamic analysis,”
Journal of Systems and Software (JSS), vol. 137, pp. 463–479, 2018.

[46] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection
on millions of lines of code,” in Proceedings of the 2007 International
Symposium on Foundations of Software Engineering (FSE), 2007, pp.
205–214.

[47] L. Zhang and C. Wang, “RClassify: classifying race conditions in
web applications via deterministic replay,” in Proceedings of the
39th International Conference on Software Engineering (ICSE), 2017,
pp. 278–288.

[48] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder,
“Automatically classifying benign and harmful data races using
replay analysis,” in Proceedings of the 28th International Conference
on Programming Language Design and Implementation (PLDI), 2007,
pp. 22–31.

[49] B. Kasikci, C. Zamfir, and G. Candea, “Data races vs. data race
bugs: telling the difference with Portend,” in Proceedings of the 17th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012, pp. 185–198.

[50] “Netperf benchmark,” http://www.netperf.org/netperf/.
[51] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas, “Accurate

and efficient filtering for the Intel thread checker race detector,” in
Proceedings of the 1st Workshop on Architectural and System Support
for Improving Software Dependability, 2006, pp. 34–41.

[52] “Razzer repository,” https://github.com/compsec-snu/razzer.
[53] H. A. Rosenberg and K. G. Shin, “Software fault injection and

its application in distributed systems,” in Proceedings of the 23rd
International Symposium on Fault-Tolerant Computing (FTCS), 1993,
pp. 208–217.

[54] “Fuzzing,” https://en.wikipedia.org/wiki/Fuzzing.
[55] T. Yu, X. Qu, and M. B. Cohen, “VDTest: an automated framework

to support testing for virtual devices,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE), 2016, pp.
583–594.

[56] “Patchwork for FFmpeg,” https://patchwork.ffmpeg.org/project/
ffmpeg/list/.

[57] “Patchwork for QEMU,” https://patchwork.ozlabs.org/project/
qemu-devel/list/.

[58] “Patchwork for Linux NFS filesystem,” https://patchwork.kernel.
org/project/linux-nfs/list/.

[59] M. Arnold and B. G. Ryder, “A framework for reducing the cost
of instrumented code,” in Proceedings of the 22nd International Con-
ference on Programming Language Design and Implementation (PLDI),
2001, pp. 168–179.

[60] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan,
“Sound predictive race detection in polynomial time,” in Proceed-
ings of the 39th International Symposium on Principles of Programming
Languages (POPL), 2012, pp. 387–400.

[61] A. K. Rajagopalan and J. Huang, “RDIT: race detection from in-
complete traces,” in Proceedings of the 2015 International Symposium
on Foundations of Software Engineering (FSE), 2015, pp. 914–917.

[62] M. Prvulovic and J. Torrellas, “ReEnact: using thread-level specu-
lation mechanisms to debug data races in multithreaded codes,”
in Proceedings of the 30th International Symposium on Computer
Architecture (ISCA), 2003, pp. 110–121.

[63] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: a race and
transaction-aware Java runtime,” in Proceedings of the 28th Inter-
national Conference on Programming Language Design and Implemen-
tation (PLDI), 2007, pp. 245–255.

[64] O. Shacham, M. Sagiv, and A. Schuster, “Scaling model checking
of dataraces using dynamic information,” in Proceedings of the
10th International Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2005, pp. 107–118.

[65] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient data race
detection for distributed memory parallel programs,” in Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2011, pp. 51:1–51:12.

[66] C. Flanagan and S. N. Freund, “Type-based race detection for
Java,” in Proceedings of the 21st International Conference on Program-
ming Language Design and Implementation (PLDI), 2000, pp. 219–232.

[67] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller, “Automated
type-based analysis of data races and atomicity,” in Proceedings of
the 10th International Symposium on Principles and Practice of Parallel
programming (PPoPP), 2005, pp. 83–94.

[68] C. Flanagan and S. N. Freund, “Detecting race conditions in large
programs,” in Proceedings of the 2001 International Workshop on
Program Analysis for Software Tools and Engineering (PASTE), 2001,
pp. 90–96.

[69] S. Keul, “Tuning static data race analysis for automotive control
software,” in Proceedings of the 11th International Working Conference
on Source Code Analysis and Manipulation (SCAM), 2011, pp. 45–54.

[70] S. Blackshear, N. Gorogiannis, P. W. O’Hearn, and I. Sergey,
“RacerD: compositional static race detection,” in Proceedings of
the 33rd International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2018, pp. 1–28.

[71] Z. Anderson, D. Gay, R. Ennals, and E. Brewer, “SharC: checking
data sharing strategies for multithreaded C,” in Proceedings of the
29th International Conference on Programming Language Design and
Implementation (PLDI), 2008, pp. 149–158.

[72] M. Said, C. Wang, Z. Yang, and K. Sakallah, “Generating data
race witnesses by an SMT-based analysis,” in Proceedings of the 3rd
International Symposium on NASA Formal methods (NFM), 2011, pp.
313–327.

[73] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and
precise symbolic analysis of concurrency bugs in device drivers,”
in Proceedings of the 30th International Conference on Automated
Software Engineering (ASE), 2015, pp. 166–177.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3138735

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 22,2022 at 09:23:39 UTC from IEEE Xplore. Restrictions apply.

